Finding the inverse of 4th rank elasticity tensor

  • Thread starter Thread starter Pilou115
  • Start date Start date
  • Tags Tags
    Inverse rank
AI Thread Summary
The discussion focuses on the challenge of finding the inverse of a fourth-order elasticity tensor, specifically transitioning from equations 2.7.11 to 2.7.16. The user seeks guidance or references on this topic, indicating a lack of available online resources. They express a need for assistance in tensor algebra to demonstrate that the product of the tensor and its inverse yields the identity tensor. The conversation highlights the complexity of tensor operations in elasticity theory. Overall, the user is looking for clear explanations or examples to aid their understanding.
Pilou115
Messages
1
Reaction score
0
Homework Statement
I need to find how to obtain the expression of the inverse of a rank four elasticity tensor.
Relevant Equations
C = k 1x1 + 2µ[I-1/3*1x1] where C in the foutrth order tensor
C^-1 = k^(-1)/9 1x1 + 2µ^(-1)[I-1/3*1x1]
I'm desperately trying to understand how to get from 2.7.11 to 2.7.16 and cannot find any reference online on how to find the inverse of an elastic tangent modulus (fourth_order tensor). Can someone help me or give me a reference I can check where they do a similar thing? I would really appreciate it !

1712785536404.png



 
Physics news on Phys.org
If you know how to do tensor algebra, you should be able to show that ##C/otimes C^{-1}=\text{ the identity tensor.}## (I don't know how to do it.)
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top