Finding the projection of a Vector

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Kindly see attached.
Relevant Equations
vector knowledge
I am looking at this now; pretty straightforward as long as you are conversant with the formula: anyway i think there is a mistake on highlighted i.e
1689563985799.png
1689564008049.png
Ought to be

##-\dfrac{15}{37}(i+6j)##

just need a confirmation as at times i may miss to see something. If indeed its a mistake then its time to look for a better resource.
 
Last edited:
Physics news on Phys.org
##1(3) + 6(-2) = 3 - 12 = -9##

Note the negative sign out front of the fraction.

-Dan
 
Maybe you are confusing a vector unit ##\mathbf{i}## with imaginary unit i.
 
topsquark said:
##1(3) + 6(-2) = 3 - 12 = -9##

Note the negative sign out front of the fraction.

-Dan
but

##\vec u= -i+4j+3k##

aaaaaargh let me take a break...thanks man.
 
anuttarasammyak said:
Maybe you are confusing a vector unit ##\mathbf{i}## with imaginary unit i.
Actually, i was looking at the wrong question...you realise that i have posted a: question which is referenced to a totally different solution i.e b: solution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top