Drakkith said:
I'm afraid I'm still not sure how to solve this.
##\begin{bmatrix}t_{11}&t_{12}&t_{13}\\t_{21}&t_{22}&t_{23}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}x_1+x_2+x_3\\0\end{bmatrix}##
If I set up a system of equations, what goes on the right side of the equal sign for row 1? ##x_1+x_2+x_3##? Or 1+1+1?
Neither make sense to me, because we have 3 variables but only 2 equations.
We have the equation ##Tx=x'## with the matrix ##T=(t_{ij})## and the vectors ##x=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}## and ##x'=\begin{bmatrix}x_1+x_2+x_3\\0 \end{bmatrix}##.
If we write it out, i.e. ##Tx## in coordinates, then it gets
$$
T \cdot x = \begin{bmatrix}t_{11}&t_{12}&t_{13}\\t_{21}&t_{22}&t_{23}&\end{bmatrix} \cdot \begin{bmatrix}x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix}t_{11}x_1+t_{12}x_2+t_{13}x_3 \\ t_{21}x_1+ t_{22}x_2+t_{23}x_3 \end{bmatrix} =\begin{bmatrix}x_1+x_2+x_3\\ 0 \end{bmatrix}
$$
Now the crucial point is, that this has to hold
for all values of ##x_1,x_2,x_3##, because they represent any vector of the domain ##\mathbb{R}^3##. This means, that we can substitute whatever we want for those values and can generate as many equations as we like. Most will be linearly dependent, so they won't necessarily lead to qualitatively different equations. E.g. replacing ##(x_1,x_2,x_3)=(1,0,0)## and ##(x_1,x_2,x_3)=(2,0,0)## will yield the same result. But the substitutions ##(x_1,x_2,x_3)=(1,0,0)\; , \;(x_1,x_2,x_3)=(0,1,0)\; , \;(x_1,x_2,x_3)=(0,0,1)## give us three times two independent equations to solve for the ##t_{ij}##. Just plug them in and read out the values ##t_{11}=1\; , \; t_{21}=0##, then ##t_{12}=1\; , \; t_{22}=0## and finally ##t_{31}=1\; , \; t_{31}=0##.