Finding the x component of position vector

Click For Summary
The discussion focuses on calculating the x component of a position vector for a ball affected by both gravity and an electric field. The initial calculations yielded a time of 3.377 seconds and an x displacement of 18.84 meters, but the expected answer is 31.13 meters. Participants point out that the force from the electric field and its resulting acceleration must be included in the calculations. It's emphasized that the assumption of no acceleration in the x-direction is incorrect, and the kinematic equations should be adjusted accordingly. Additionally, the importance of including units in calculations is highlighted.
hraghav
Messages
48
Reaction score
5
Homework Statement
A ball of mass 𝑚=4.07kg is thrown over level ground in a region where the electric field is 𝐸⃗=5.5N/C𝑖̂. The ball has a charge 𝑞=1.59C. The ball was thrown from the origin with an initial velocity of 𝑣⃗𝑖=5.58m/s𝑖̂+16.55m/s𝑘̂. Gravity provides an acceleration of 𝑔⃗=−9.8m/s^2𝑘̂. What is the x-component of the position vector where the ball lands?
Relevant Equations
t = 3.377s
x = 18.84m which is wrong
I first calculated the time using y = (viy)(t) + 0.5gt^2 where y is the vertical displacement which is 0 for the ball landing back on the ground, viy is the initial vertical velocity ie 16.55m/s and g = -9.8m/s}^2. I get 2 values for t, t=0 and t= 3.377s. Then using the equation x = (vix)(t) = (5.58m/s)(3.377s) I get x as 18.84m. The correct answer is 31.13m and I am not sure where I am going wrong.
Could someone please help me with this and let me know where am I making an error?
Thank you
 
Physics news on Phys.org
hraghav said:
Could someone please help me with this and let me know where am I making an error?
You are ignoring the force exerted by the electric field on the charged ball. What is that force? What acceleration does it provide? Rewrite the kinematic equations to reflect this correction.
 
kuruman said:
You are ignoring the force exerted by the electric field on the charged ball. What is that force? What acceleration does it provide? Rewrite the kinematic equations to reflect this correction.
F = qE = 8.745 and acceleration = F/m = 2.148 but how do I use these values in my question?
 
hraghav said:
F = qE = 8.745 and acceleration = F/m = 2.148 but how do I use these values in my question?
You have assumed that the ball is not accelerating in the x-direction in your solution. This tells you that it does have a constant acceleration that you must incorporate. You have already handled one case of constant acceleration in this problem so doing it again should be relatively straightforward.

Note: Never ever write numbers without appropriate units.
 
  • Like
Likes MatinSAR and PeroK
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
964
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
4K
Replies
5
Views
4K
Replies
5
Views
1K
Replies
12
Views
1K