MHB Finding $\theta$ in a Geometric Diagram

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Diagram Geometric
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for $\theta$ in the diagram below.

View attachment 7863
 

Attachments

  • unsolved challenge.png
    unsolved challenge.png
    4.9 KB · Views: 107
Mathematics news on Phys.org
anemone said:
Solve for $\theta$ in the diagram below.
Let $a,b,O,A,B,M$ as in the following picture ($O$ is the origin).
\begin{tikzpicture}
\def\a{4}
\def\b{4}
\draw[fill=black] (-\a,0) -- node[below] {a} (0,0) node[below] {O} -- node[below] {a} (\a,0);
\draw (-\a,0) node[above right] {$70^\circ$} -- node
{b} +(70:\b) coordinate (A) node[above] {A};
\draw (\a,0) node[above left] {$80^\circ$} -- node
{b} +({180-80}:\b) coordinate (B) node[above] {B};
\draw (A) -- (B);
\draw[fill=black] (0,0) -- +(85:{\b*sin(75)}) node[above] {M};
\draw[thick] (0,0) node[above right] {$\theta$} +(.6,0) arc (0:85:.6);
\end{tikzpicture}

Then the coordinates of A are $(-a+b\cos 70^\circ, b\sin 70^\circ)$.
And the coordinates of B are $(a-b\cos 80^\circ, b\sin 80^\circ)$.
Point M is the average of A and B, which is:
$$M = \left(\frac b2(\cos 70^\circ - \cos 80^\circ), \frac b2(\sin 70^\circ+\sin 80^\circ)\right)$$
Using the sum and difference formulas of sine and cosine, we get:
$$M = b(\sin 75^\circ \sin 5^\circ, \sin 75^\circ \cos 5^\circ)$$
And with the complement rule:
$$M = b\sin 75^\circ (\cos 85^\circ, \sin 85^\circ)$$

Thus $\theta = 85^\circ$.​
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top