Finding unitary operator associated with a given Hamiltonian

ubergewehr273
Messages
139
Reaction score
5
Homework Statement
Given a Hamiltonian ##H = \hbar \omega \sigma_1##, you are supposed to find the associated time-evolution unitary operator ##U(t)##.
Relevant Equations
Time-independent Schrodinger's equation

$$-i \hbar \frac{\partial | \psi (t) \rangle}{\partial t} = \hat{H} | \psi (t) \rangle$$

The associated unitary operator is

$$U(t) = \exp (\frac{-i \hat{H} t}{\hbar})$$
Now from the relevant equations,
$$U(t) = \exp(-i \omega \sigma_1 t)$$

which is easy to compute provided the Hamiltonian is diagonalized. Writing ##\sigma_1## in its eigenbasis, we get

$$\sigma_1 =
\begin{pmatrix}
1 & 0\\
0 & -1\\
\end{pmatrix}
$$

and hence the unitary ##U(t)## becomes

$$U(t) =
\begin{pmatrix}
e^{-i \omega t} & 0\\
0 & e^{i \omega t}\\
\end{pmatrix}
$$

Mind you that the above representation of $U(t)$ is in the basis ##\{ |+\rangle, |-\rangle\}## where

$$ |+\rangle =
\frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\
1\\
\end{pmatrix}
$$

$$ |-\rangle =
\frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\
-1\\
\end{pmatrix}
$$

Now, I need to write ##U(t)## back in the original basis ##\{|0\rangle, |1\rangle\}## (which is where I'm facing an issue). Finding the components of the above expression for ##U(t)## in the original basis,

$$\langle 0 | U(t) | 0 \rangle = e^{-i \omega t} \qquad \langle 1 | U(t) | 1 \rangle = e^{i \omega t}$$

with ##\langle 0 | U(t) | 1 \rangle = 0## and ##\langle 1 | U(t) | 0 \rangle = 0##. This gives me the exact same matrix representation in the original basis. Obviously this is not true and I'm doing something wrong.
 
Last edited:
Physics news on Phys.org
For inline Latex you need to use double hashes rather than single dollars.
 
ubergewehr273 said:
Finding the components of the above expression for ##U(t)## in the original basis,

$$\langle 0 | U(t) | 0 \rangle = e^{-i \omega t} \qquad \langle 1 | U(t) | 1 \rangle = e^{i \omega t}$$

with ##\langle 0 | U(t) | 1 \rangle = 0## and ##\langle 1 | U(t) | 0 \rangle = 0##. This gives me the exact same matrix representation in the original basis. Obviously this is not true and I'm doing something wrong.
You'll have to show your work, for instance ##\langle 0 | U(t) | 0 \rangle##, because the result you get is incorrect.
 
You can write your solution in terms of
$$\hat{U}=\exp(-\mathrm{i} \omega t) |+ \rangle \langle +| + \exp(\mathrm{i} \omega t) |- \rangle \langle -|.$$
Now simply express ##|+ \rangle## and ##|- \rangle## as linear combinations of ##|1 \rangle## and ##|0 \rangle## and multiply out the dyadic products. Then you can read out the matrix elements easily.

A much easier way is to directly use the properties of the Pauli matrix. All you need is ##\hat{\sigma}_1^2=1## and then write down the power series for the exponential function.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top