Finding unitary operator associated with a given Hamiltonian

Click For Summary
The discussion focuses on finding the unitary operator associated with a given Hamiltonian, specifically using the Pauli matrix ##\sigma_1##. The unitary operator is expressed as ##U(t) = \exp(-i \omega \sigma_1 t)##, which is easily computed when the Hamiltonian is diagonalized. The challenge arises when attempting to convert ##U(t)## back to the original basis ##\{|0\rangle, |1\rangle\}##, as the initial calculations yield an incorrect representation. Suggestions include expressing the eigenstates in terms of the original basis and utilizing properties of the Pauli matrix to simplify the process. The conversation emphasizes the importance of correctly computing the matrix elements to achieve accurate results.
ubergewehr273
Messages
139
Reaction score
5
Homework Statement
Given a Hamiltonian ##H = \hbar \omega \sigma_1##, you are supposed to find the associated time-evolution unitary operator ##U(t)##.
Relevant Equations
Time-independent Schrodinger's equation

$$-i \hbar \frac{\partial | \psi (t) \rangle}{\partial t} = \hat{H} | \psi (t) \rangle$$

The associated unitary operator is

$$U(t) = \exp (\frac{-i \hat{H} t}{\hbar})$$
Now from the relevant equations,
$$U(t) = \exp(-i \omega \sigma_1 t)$$

which is easy to compute provided the Hamiltonian is diagonalized. Writing ##\sigma_1## in its eigenbasis, we get

$$\sigma_1 =
\begin{pmatrix}
1 & 0\\
0 & -1\\
\end{pmatrix}
$$

and hence the unitary ##U(t)## becomes

$$U(t) =
\begin{pmatrix}
e^{-i \omega t} & 0\\
0 & e^{i \omega t}\\
\end{pmatrix}
$$

Mind you that the above representation of $U(t)$ is in the basis ##\{ |+\rangle, |-\rangle\}## where

$$ |+\rangle =
\frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\
1\\
\end{pmatrix}
$$

$$ |-\rangle =
\frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\
-1\\
\end{pmatrix}
$$

Now, I need to write ##U(t)## back in the original basis ##\{|0\rangle, |1\rangle\}## (which is where I'm facing an issue). Finding the components of the above expression for ##U(t)## in the original basis,

$$\langle 0 | U(t) | 0 \rangle = e^{-i \omega t} \qquad \langle 1 | U(t) | 1 \rangle = e^{i \omega t}$$

with ##\langle 0 | U(t) | 1 \rangle = 0## and ##\langle 1 | U(t) | 0 \rangle = 0##. This gives me the exact same matrix representation in the original basis. Obviously this is not true and I'm doing something wrong.
 
Last edited:
Physics news on Phys.org
For inline Latex you need to use double hashes rather than single dollars.
 
ubergewehr273 said:
Finding the components of the above expression for ##U(t)## in the original basis,

$$\langle 0 | U(t) | 0 \rangle = e^{-i \omega t} \qquad \langle 1 | U(t) | 1 \rangle = e^{i \omega t}$$

with ##\langle 0 | U(t) | 1 \rangle = 0## and ##\langle 1 | U(t) | 0 \rangle = 0##. This gives me the exact same matrix representation in the original basis. Obviously this is not true and I'm doing something wrong.
You'll have to show your work, for instance ##\langle 0 | U(t) | 0 \rangle##, because the result you get is incorrect.
 
You can write your solution in terms of
$$\hat{U}=\exp(-\mathrm{i} \omega t) |+ \rangle \langle +| + \exp(\mathrm{i} \omega t) |- \rangle \langle -|.$$
Now simply express ##|+ \rangle## and ##|- \rangle## as linear combinations of ##|1 \rangle## and ##|0 \rangle## and multiply out the dyadic products. Then you can read out the matrix elements easily.

A much easier way is to directly use the properties of the Pauli matrix. All you need is ##\hat{\sigma}_1^2=1## and then write down the power series for the exponential function.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
9
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K