MHB Finding Values for m and b to Create a Symmetric Line

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
To find values for m and b that make the points (8, 2) and (4, 8) symmetric about the line y = mx + b, one must determine the perpendicular bisector of the segment connecting these points. Plugging the coordinates into the line equation y = mx + b is incorrect, as it does not yield the desired line of symmetry. Instead, the midpoint of the segment and the slope of the line connecting the two points should be calculated to find the slope of the perpendicular bisector. The final equation of the line can then be derived from this midpoint and slope. Understanding these geometric relationships is crucial for solving the problem correctly.
mathdad
Messages
1,280
Reaction score
0
Determine values for m and b so that the points (8, 2) and (4, 8) are symmetric about the line y = mx + b.

Do I plug the coordinates of each point into the formula
y = mx + b individually to find values for m and b?
 
Mathematics news on Phys.org
RTCNTC said:
Determine values for m and b so that the points (8, 2) and (4, 8) are symmetric about the line y = mx + b.

Do I plug the coordinates of each point into the formula
y = mx + b individually to find values for m and b?
Before you get to that, what does it mean for the points to be symmetric about y = mx + b?

-Dan
 
RTCNTC said:
Determine values for m and b so that the points (8, 2) and (4, 8) are symmetric about the line y = mx + b.

Do I plug the coordinates of each point into the formula
y = mx + b individually to find values for m and b?
Absolutely NOT! That would give you the equation of the line that contains (8, 2) and (4, 6) but these two points do NOT lie on the line you seek! They are symmetric about that line. In particular, the line you seek must be the perpendicular bisector of the line segment between (8, 2) and (4, 8).

What are the coordinates of the point midway between (8, 2) and (4, 6)? What is the slope of the line through (8, 2) and (4, 6)? What is the slope of a line perpendicular to that line? Finally, what is the equation of the line through that midpoint perpendicular to that line?
 
HallsofIvy said:
Absolutely NOT! That would give you the equation of the line that contains (8, 2) and (4, 6) but these two points do NOT lie on the line you seek! They are symmetric about that line. In particular, the line you seek must be the perpendicular bisector of the line segment between (8, 2) and (4, 8).

What are the coordinates of the point midway between (8, 2) and (4, 6)? What is the slope of the line through (8, 2) and (4, 6)? What is the slope of a line perpendicular to that line? Finally, what is the equation of the line through that midpoint perpendicular to that line?

Thank you. I have been away from this site for more than 2 weeks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top