Finite Binomial Sum: Proving 1 + 1/2 + 1/3 + ... + 1/n

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Binomial Finite Sum
Click For Summary

Discussion Overview

The discussion centers around proving the equality of a finite binomial sum involving alternating signs and binomial coefficients with the harmonic series up to n. The scope includes mathematical reasoning and exploration of combinatorial identities.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the main equation to be proven, relating a binomial sum to the harmonic series.
  • Post 2 and Post 3 provide hints, suggesting that participants are exploring potential methods or approaches to the proof.
  • Post 4 expresses confidence in being able to approach the problem and indicates an intention to provide a solution later.
  • Post 5 reiterates the equation from Post 1, emphasizing its importance in the discussion.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the proof, and multiple hints and approaches are being suggested without resolution.

Contextual Notes

Some participants may be operating under assumptions about the properties of binomial coefficients and harmonic numbers that are not explicitly stated.

Who May Find This Useful

Readers interested in combinatorial identities, harmonic series, or mathematical proofs may find this discussion relevant.

DreamWeaver
Messages
297
Reaction score
0
Show that

$$\sum_{j=1}^{j=n}\binom{n}{j} \frac{(-1)^{j+1}}{j} = 1 +\frac{1}{2} +\frac{1}{3} + \cdots +\frac{1}{n}$$
 
Physics news on Phys.org
A small hint
- is missing :o
 
lfdahl said:
A small hint
- is missing :o

Really sorry, Ifdahl!
Keep thinking I'll have time, and then I'm unexpectedly busy... Bad mammal! :o:o:o

Sorry...
 
Nice question. I think I know how to approach it. I'll write the solution later.
 
$$\sum_{j=0}^n {n \choose j}(-x)^j=(1-x)^n
$$

$$\sum_{j=1}^n {n \choose j}(-1)^{j}x^{j-1}=\frac{(1-x)^n-1}{x}
=-\sum^n_{j=1}(1-x)^{j-1}$$

$$\int^1_0\sum_{j=1}^n {n \choose j}(-1)^{j}x^{j-1}dx=-\sum^n_{j=1}\int^1_0(1-x)^{j-1}dx=-\sum^n_{j=1}\frac{1}{j}$$
$$\sum_{j=1}^n {n \choose j}\frac{(-1)^{j+1}}{j}=H_n$$
 
Last edited:
DreamWeaver said:
Show that

$$\sum_{j=1}^{j=n}\binom{n}{j} \frac{(-1)^{j+1}}{j} = 1 +\frac{1}{2} +\frac{1}{3} + \cdots +\frac{1}{n}---(1)$$
to prove (1)we can also use the method of induction
it is easy to show that (1) is true when n=1,2,3--
suppose (1) is true as n=m ,now we need to prove :
$$\sum_{j=1}^{j=m+1}\binom{m+1}{j} \frac{(-1)^{j+1}}{j} = 1 +\frac{1}{2} +\frac{1}{3} + \cdots +\frac{1}{m+1}---(2)$$
the proof of (2):
we use the formula :

$$\binom{m+1}{j} =\binom{m}{j}+\binom{m}{m+1-j} $$

and the rest is not hard (many terms can be canceled)
now it is too late , I am going to sleep ,hope someone can finish it
 

Similar threads

Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K