- #1

- 42

- 0

## Main Question or Discussion Point

I'm attempting to perform interpolation in 3 dimensions and have a question that hopefully someone can answer.

The derivative approximation is simple in a single direction:

df/dx(i,j,k)= [f(i+1,j,k) - f(i-1,j,k)] / 2

And I know that in the second order:

d2f/dxdy(i,j,k)= [f(i+1,j+1,k) - f(i+1,j,k) - f(i,j+1,k) + f(i-1,j-1,k)] / 4

The final item I need is the third order approximation, and I'm not sure how to scale the first two into a third variable.

d3f/dxdydz(i,j,k)= ?

Can anyone shed some light on this?

Thanks in advance!

The derivative approximation is simple in a single direction:

df/dx(i,j,k)= [f(i+1,j,k) - f(i-1,j,k)] / 2

And I know that in the second order:

d2f/dxdy(i,j,k)= [f(i+1,j+1,k) - f(i+1,j,k) - f(i,j+1,k) + f(i-1,j-1,k)] / 4

The final item I need is the third order approximation, and I'm not sure how to scale the first two into a third variable.

d3f/dxdydz(i,j,k)= ?

Can anyone shed some light on this?

Thanks in advance!