MHB Finite Sum of Indecomposable Modules .... Bland, Proposition 4.2.10 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.10 ... ...

Proposition 4.2.10 reads as follows:View attachment 8213My questions are as follows:Question 1

In the above proof by Bland we read the following:

" ... ... If $$M$$ is indecomposable, then we are done ... "

Is Bland arguing that if $$M$$ is indecomposable then we can regard $$M$$ itself as a "finite sum" of indecomposable R-modules ... ... can someone please confirm that this is the case ...

Question 2

In the above proof by Bland we read the following:

" ... ... Since $$M$$ is not indecomposable, we may write $$M = X \bigoplus Y$$. At least one of $$X$$ and $$Y$$ cannot be a finite direct sum of its indecomposable submodules. ... ... "

Can someone please explain why at least one of $$X$$ and $$Y$$ cannot be a finite direct sum of its indecomposable submodules ... ... ?

... indeed ... Bland is arguing the $$M$$ is not indecomposable ... so $$M$$ is decomposable ... so $$M = X \bigoplus Y$$ ... but how does $$M$$ being decomposable stop $$X$$ and $$Y$$ both being decomposable ... ?--------------------------------------------------------------------------------------------------------------------------------------------

***EDIT***

Regarding Question 2 ... I think I should have read the proof more carefully ... and noted that Bland is assuming not only that M is not indecomposable ... but also that $$M$$ fails to have a decomposition of the form ...

$$M = M_1 \bigoplus M_2 \bigoplus \ ... \ ... \ \bigoplus M_n $$ ... ... ... ... ... (1)

... so if both of $$X$$ and $$Y$$ were finite direct sums of indecomposable submodules then $$M$$ would have a decomposition of the form (1) ... which violates the assumption that $$M$$ fails to have a decomposition of the form ...

Is that correct ...?

----------------------------------------------------------------------------------------------------------------------------------------------Help will be appreciated ...

Peter=========================================================================Definition 4.2.9 is relevant to the above post so I am providing the text of Definition 4.2.9 ... as follows ...

View attachment 8214Hope that helps ...

Peter
 
Last edited:
Physics news on Phys.org
$M$ can be decomposable or indecomposable.

If $M$ is indecomposable then we are ready, because then $M$ is a finite sum of $1$ indecomposable submodule of $M$, namely $M$ itself. That answers question 1.

If $M$ is decomposable, then we have to prove that $M$ is a finite direct sum of indecomposable submodules of $M$.

For the proof we suppose that there is no finite direct sum of indecomposable submodules of $M$, i.e., $M$ cannot be written as a finite direct sum of indecomposable submodules of $M$. This will turn out to be a contradiction.
Your edited answer of question 2 is correct.

See my answer in the other post.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top