(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex] xy^{'} - 2y = x^{5} [/tex]

2. Relevant equations

[tex]e^{\int P(x)dx}[/tex]

3. The attempt at a solution

Rearranging the into the form,

[tex]y^{'} - P(x)y = Q(x)[/tex]

So,

[tex]y^{'} - \frac{2y}{x} = x^{4}[/tex]

Multiplying both sides by [tex] e^{\int P(x)dx} [/tex] or [tex]e^{-2\int \frac{dx}{x}}[/tex],

Since [tex]e^{-2ln|x|} = \frac{1}{x^{2}}[/tex]

[tex]\frac{y^{'}}{x^{2}} - \frac{2y}{x^{3}} = x^{2} [/tex]

Integrating both sides,

[tex]\int\left( \frac{y^{'}}{x^{2}} - \frac{2y}{x^{3}}\right)dx =\int x^{2}dx [/tex]

Integrating the LHS should result in my integrating factor times y, [tex]e^{-2ln|x|}(y)[/tex] or [tex]\frac{1}{x^{2}}(y)[/tex]

So,

[tex]\frac{1}{x^{2}}(y) = \int x^{2}dx[/tex]

[tex]\frac{1}{x^{2}}(y) = \frac{1}{3} x^{3} + C[/tex]

Finally,

[tex]y = \frac{x^{5}}{3} + Cx^{2}[/tex]

Is this correct? (I don't have any type of solutions to check, so I thought I'd post)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# First Order Differential Equation

**Physics Forums | Science Articles, Homework Help, Discussion**