First Order Nonlinear Ordinary Differential Equation

Click For Summary

Discussion Overview

The discussion revolves around a first-order nonlinear ordinary differential equation (ODE) presented in Demidovitch's book. Participants explore various methods for solving the equation, including transformations to polar coordinates, and discuss the implications of different approaches and substitutions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants inquire about the specific tasks related to the differential equation, such as finding steady-states or plotting the vector field.
  • Several participants express skepticism about the utility of polar coordinates for the given equation, particularly due to its asymmetry.
  • One participant, Dan, reports unsuccessful attempts to solve the equation using various substitutions and mentions that Mathematica could not provide a closed-form solution, suggesting numerical methods may be necessary.
  • Another participant mentions a possible typo in the original problem, proposing an alternative form of the equation that could simplify the analysis when using polar coordinates.
  • Some participants explore the substitution \( v = \frac{y}{x} \) and express difficulty in progressing towards a solution, with one participant noting the complexity of the square root in series expansion attempts.
  • Another participant provides a detailed transformation to polar coordinates, showing steps that lead to a potential solution involving \( y^2 = 2Cx + C^2 \).
  • One participant suggests that the transformation to polar coordinates simplifies the ODE significantly, leading to a straightforward result.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to solve the differential equation. There are competing views on the effectiveness of polar coordinates and the validity of the original problem statement.

Contextual Notes

Participants note limitations in their approaches, including unresolved mathematical steps and the complexity introduced by the square root in the equation. The discussion reflects a variety of methods attempted without a definitive resolution.

Chipset3600
Messages
79
Reaction score
0
Hello, can you guys help me please with this differential equation from Demidovitch book, is to find the solution transforming to polar coordinates :

View attachment 1479
 

Attachments

  • ode.jpg
    ode.jpg
    11.6 KB · Views: 155
Last edited:
Physics news on Phys.org
Chipset3600 said:
Hello, can you guys help me please with this differential equation from Demidovitch book:

View attachment 1479

What are you supposed to do? Find the steady-states? Plot the vector field? Also, in the the notes section, there are notes on Adv ODEs which are about nonlinear ODEs, dynamical systems, and bifurications.
 
dwsmith said:
What are you supposed to do? Find the steady-states? Plot the vector field? Also, in the the notes section, there are notes on Adv ODEs which are about nonlinear ODEs, dynamical systems, and bifurications.
is to find the solution transforming to polar coordinates.
 
Chipset3600 said:
is to find the solution transforming to polar coordinates.

Hmm. If it was $x^{2}+y^{2}$ under the square root, I could believe that that method would gain you something. But it's $x^{2}+y^{3}$ - rather asymmetric. I played around with this DE a bit, and couldn't get anything to work. Maybe Jester could weigh in on it.
 
Ackbach said:
Hmm. If it was $x^{2}+y^{2}$ under the square root, I could believe that that method would gain you something. But it's $x^{2}+y^{3}$ - rather asymmetric. I played around with this DE a bit, and couldn't get anything to work. Maybe Jester could weigh in on it.
I played with various substitutions to get rid of that square root and got nowhere. In frustration I turned to Mathematica (which is usually a bit better than Wolfram|Alpha) and it flatly refused to solve the equation. I tried various versions of the equation and Mathematica didn't give me anything there either. Let the Calculus gurus around here have the final say if it can be solved in closed forms, but I don't think it can be done other than numerically.

-Dan
 
topsquark said:
I played with various substitutions to get rid of that square root and got nowhere. In frustration I turned to Mathematica (which is usually a bit better than Wolfram|Alpha) and it flatly refused to solve the equation. I tried various versions of the equation and Mathematica didn't give me anything there either. Let the Calculus gurus around here have the final say if it can be solved in closed forms, but I don't think it can be done other than numerically.

-Dan

I agree.
Polar coordinates do not appear to have any use for this DE.
The best we can do is a numerical solution, or analyze some properties of the solution.

Properties I can see is that for $y=0$ and $x\ge0$, the DE is indeterminate.
For $y=0$ and $x<0$ we have a vertical tangent.
And for $y < -|x|^{2/3}$ the solution is undefined.
 
Jester mentioned to me, in a PM, that if the author suggested polar coordinates, that it was a typo and the DE is
$$y'= \frac{ \sqrt{x^{2}+y^{2}}-x}{y},$$
in which case switching to polar indeed makes the DE much simpler.
 
Ackbach said:
Jester mentioned to me, in a PM, that if the author suggested polar coordinates, that it was a typo and the DE is
$$y'= \frac{ \sqrt{x^{2}+y^{2}}-x}{y},$$
in which case switching to polar indeed makes the DE much simpler.

Like everyone else, I tried various methods with no success, and I too began to wonder if the problems was incorrectly given in the book and should have been given as Jester suggests. Before post #3 was edited to mention polar coordinates, I looked at it as possibly meant to be solved using the substitution $$v=\frac{y}{x}$$.
 
MarkFL said:
Like everyone else, I tried various methods with no success, and I too began to wonder if the problems was incorrectly given in the book and should have been given as Jester suggests. Before post #3 was edited to mention polar coordinates, I looked at it as possibly meant to be solved using the substitution $$v=\frac{y}{x}$$.
I tried both v = y/x and v = x/y. Both methods gave me something that looked like it might work out to give some kind of elliptic integral but I couldn't finish putting it in that form either. I got a little ways into series expansion but I got a headache before I got too far into it. That square root is a bear for a series solution.

I'd like to hear what Chipset3600 has to say about the matter at this point.

-Dan
 
  • #10
If we start from:
$$y'=\frac{\sqrt{x^2+y^2} - x}{y}$$
and switch to polar coordinates, then:
\begin{array}{lcl}
dy&=&\frac{\sqrt{x^2+y^2} - x}{y}dx \\
d(r\sin\phi)&=&\frac{r-r\cos\phi}{r\sin\phi}d(r\cos\phi) \\
dr \sin\phi +r\cos\phi d\phi &=& \frac{1-\cos\phi}{\sin\phi} (dr\cos\phi - r\sin\phi d\phi) \\
\cdots \\
\frac{\sin\phi d\phi}{1 - \cos\phi} &=& -\frac {dr}{r} \\
\ln(1 - \cos\phi) &=& -\ln(r) + C_1 \\
1 - \cos\phi &=& \frac {C} r \\
r\cos\phi &=& r - C \\
x &=& \sqrt{x^2+y^2} - C \\
x + C &=& \sqrt{x^2+y^2} \\
x^2 + 2Cx+C^2 &=& x^2+y^2 \\
y^2 &=& 2Cx+C^2
\end{array}
 
  • #11
It's actually even easier than I like Serena's post.

If $x = r \cos \theta$ and $y = r \sin \theta$ then $x^2+y^2 = r^2$, so $x + y \dfrac{dy}{dx} = r \dfrac{dr}{dx}$ and the ODE

$ y \dfrac{dy}{dx} + x = \sqrt{x^2+y^2}$ becomes $r\dfrac{dr}{dx} = r$ and the rest is easy.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K