A Fitness function for window length of filter

MisterH
Messages
12
Reaction score
0
TL;DR Summary
Find a fitness function such that: filter(LWMA-EMA) is in-phase with the sinusoid it's placed on, not by correlation, but calculated on filter weights * segment of sinusoid (that has a length equal to the filter weights), so on only 1 step of the convolution.
Fitness function for window length of filter

On a sinusoidal signal with amplitude 1, and period P, an exponential moving average (EMA) (with alpha = 1/n), and a linear weighted moving average (LWMA) (with window length n) are calculated; when you subtract the EMA from the LWMA, it can be seen that the difference of these 2 filters will be in phase with the sinusoid when the window length n of the LWMA = P/4 (and for the EMA alpha = 1/n). So if P=40, the signal: LWMA(wave,10)-EMA(wave,0.1) is in phase with the wave, but at lower amplitude. The weight function of this "difference filter" looks like this:
weights of LWMA-EMA.png

Similar, but not equal to the weights of a "zero-lag exponential moving average". It can be seen that the correlation (degree of linear association) between the wave and the filter will be maximal at n = P/4:
wave and 3 filters.png


Now, my question is: instead of looking at an entire wave, can you just look at the data in the window, multiplied with the filter weights to find which window length n will result in a signal that is in phase with the sinusoid? e.g.:
weights multiplied with wave segment.png


So at e.g. point x, wave[(x-n+1):x] is multiplied with the weight function of the difference filter, on this data, some sort of calculation is made, that returns a value e.g. between 0 and 1, with a maximum for n = P/4? So the fitness of window length n1: wave[(x-n1+1):x]*weightfunction(n1) can be compared with the fitness of window length n2: wave[(x-n2+1):x]*weightfunction(n2), and the one where n equals a -previously unknown- P/4 will return a maximum for this fitness/error function.

How would you create such a fitness function? Could it be related to curvature, or some sort of exponential fit, or some property of sinusoids?

All input is welcome and appreciated.
 
Mathematics news on Phys.org
weights multiplied with wave segment2.png
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top