I Fixing CP phases to cancel CKM phases

Siupa
Messages
30
Reaction score
5
When we try to see if the weak sector is CP invariant, we CP transform all the fields in the charged interactions terms and we get a condition involving the elements of the CKM matrix and the arbitrary phases of the CP transformed fields:
$$V_{ij} = V^*_{ij} \, e^{i(\xi_W + \phi_{d_j} - \phi_{u_i})}$$
Then, the argument goes: there are 9 parameters in V_CKM because it is a general 3x3 unitary matrix. These 9 parameters are split in 3 "angles" and 6 phases, the 3 angles being the ones you get if you restrict to an element of ##\text{SO}(3)##.

To make the above condition hold, we need to fix the CP phases to cancel the 6 CKM phases. We have 7 CP phases (1 from W, 3 from the downs and 3 from the ups), so it seems like we can do it.

But then we say "actually we have only 5 independent CP phases, because there are 2 residual global symmetries corresponding to baryon number and electric charge". Therefore, 1 phase remains in the CKM and the condition can never hold.

I don't understand the last point: why does the presence of ##\text{U}(1)_\text{B}## and ##\text{U}(1)_\text{Q}## global symmetries reduces the number of CP phases I can fix to cancel the CKM phases?
 
Physics news on Phys.org
You can use two of those phases to be included in your U(1)B and U(1)Q global transformations of your fields (one for each transformation)
 
Last edited:
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top