MHB Flore-D's question at Yahoo Answers involving related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Please help with differential equations problem solving.?

Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3mm, and one-half hour later been reduced to 2mm, find an expression for the radius of the raindrop at any time.

Here is a link to the question:

Please help with differential equations problem solving.? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello Flore-D,

Let $V$ be the volume of the raindrop in $\text{mm}^3$ at time $t$ in $\text{hr}$. Let $r$ be the radius of the drop at time $t$.

We are told:

$\displaystyle \frac{dV}{dt}=-k\left(4\pi r^2 \right)$ where $0<k\in\mathbb{R}$

Since the drop is spherical, we may state:

$\displaystyle V=\frac{4}{3}\pi r^3$

Differentiate with respect to time $t$:

$\displaystyle \frac{dV}{dt}=4\pi r^2\frac{dr}{dt}$

Equate the two expressions for $\displaystyle \frac{dV}{dt}$:

$\displaystyle 4\pi r^2\frac{dr}{dt}=-k\left(4\pi r^2 \right)$

$\displaystyle \frac{dr}{dt}=-k$

We find that the radius will decrease at a constant rate. This stems from the fact that the derivative of a sphere with respect to its radius is its surface area. Think of a sphere being decomposed into spherical shells. So, we have the initial value problem:

$\displaystyle \frac{dr}{dt}=-k$ where $\displaystyle r(0)=3,\,r\left(\frac{1}{2} \right)=2$

Integrating, we find:

$\displaystyle r(t)=-kt+C$

Use initial value to determine the parameter $C$:

$\displaystyle r(0)=-k(0)+C=3\,\therefore\,C=3$

and so we have:

$\displaystyle r(t)=-kt+3$

Now, use the other known point to determine the constant of proportionality $k$:

$\displaystyle r\left(\frac{1}{2} \right)=-k\left(\frac{1}{2} \right)+3=2\,\therefore\,k=2$

Hence, we find the radius at any time $0\le t$ is given by:

$\displaystyle r(t)=-2t+3$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top