Flux in a Uniform Magnetic Field

Click For Summary
SUMMARY

The discussion clarifies the concept of induced electromotive force (emf) in a uniform magnetic field, specifically addressing the misunderstanding surrounding magnetic flux and its relationship to motion. The key conclusion is that statement 3 is incorrect; while the surface area and magnetic field strength remain constant, the movement of the wire through the magnetic field results in a change in the effective area contributing to magnetic flux, leading to induced emf. The correct expression for this induced emf is given by the equation &mathcal{E}=vBL, where v is the velocity of the wire, B is the magnetic field strength, and L is the length of the wire within the field.

PREREQUISITES
  • Understanding of Faraday's law of electromagnetic induction
  • Familiarity with the concepts of magnetic flux and its calculation (Φ=B⋅A)
  • Basic knowledge of electromotive force (emf) and its implications in circuits
  • Concept of motional emf and its derivation
NEXT STEPS
  • Study the derivation and applications of Faraday's law of electromagnetic induction
  • Learn about motional emf and its significance in electromagnetic theory
  • Explore the relationship between magnetic fields and electric currents in conductive materials
  • Investigate practical applications of induced emf in devices such as generators and motors
USEFUL FOR

Physics students, educators, and anyone interested in understanding the principles of electromagnetism and their applications in technology.

Cardinalmont
Gold Member
Messages
22
Reaction score
4
Thank you for reading my post. I was thinking about induced emf and magnetic flux and I realized I have a huge misunderstanding, but I don't know exactly what it is. Below I will list 4 statements which I logically know cannot all be simultaneously true. Can you please tell me which one(s) are incorrect in order to aid my understanding?

1. In order to create an emf in a conductor there must be a change in magnetic flux.
This can be seen by ε=NΔΦ/Δt, If ΔΦ=0 then so will ε

2. Magnetic flux is equal to the product of a conductor's surface area, magnetic field passing through that surface area, and the angle between the two. This is given by Φ=B⋅A

3 When a wire moves through a uniform magnetic field, neither its surface area, nor the strength of the magnetic field, nor the angle between the two are changing ∴ change in magnetic flux = 0 ∴ There is no induced emf.

4 When a wire moves through a uniform magnetic field, an electromagnetic force will force electrons in the wire to one side inducing an emf.

It is clear to see that points 3 and 4 are in direct contradiction of each other. I believe 3 is false, but I can't see the logical flaw! Please help me!

Thank you.
 

Attachments

  • Screen Shot 2018-02-26 at 9.47.19 AM.png
    Screen Shot 2018-02-26 at 9.47.19 AM.png
    9 KB · Views: 688
Physics news on Phys.org
Number 3 is incorrect because the wire can be considered to be part of the boundary of a surface in the rest frame of the magnetic field, and the area of that surface is changing. The EMF turns out to be ## \mathcal{E}=vBL ##. This topic was addressed in great detail in a recent Insights article by @vanhees71 , https://www.physicsforums.com/insights/homopolar-generator-analytical-example/ , but if you are a first or second year physics student, you probably don't need to understand the full detail.
 
  • Like
Likes   Reactions: Cardinalmont
Number 3 is incorrect.It is a type of motional emf
 
It's also good to think about such problems not only in terms of Faraday's law but also in terms of electromagnetic interactions. In case 3 you have a wire, which you can see as a container of the gas of conduction electrons. Now moving through the magnetc field ##\vec{B}## leads to the force ##\vec{F}_1=q \vec{v} \times \vec{B}/c## an each electron with charge ##q(=-e)##. That implies that the electrons move towards one end of the wire (and are lacking at the other end). Thus an electric field is built up, leading to a force ##\vec{F}_2=q \vec{E}##. The stationary state is reached, as soon as the total force on the electrons is 0. Putting the two expressions for the forces together leads to the result given in #2.
 
  • Like
Likes   Reactions: Cardinalmont and Charles Link
Thank you everyone! I figured out where my misunderstanding was sprouting from.
As I stated before, in the equation Φ=B⋅A, A is the surface area of the conductor.
My misunderstanding was of the bounds of each term in Φ=B⋅A

When looking at a specific area in the magnetic field, before the wire has moved into that area the value a A for that specific space is 0 because there is no conductor there. As the wire moves into the space then there begins to be an increasing and then decreasing value of A for that specific space thus resulting in a change in flux for that specific space, and an induced emf.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
656
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 27 ·
Replies
27
Views
3K