I Follow-up on the Expanding Universe Insight article

cianfa72
Messages
2,811
Reaction score
298
TL;DR Summary
About the form of RW comoving observer worldline in local Minkowski frame at event p.
Hi, reading this Insight raised a doubt regarding the section "Comoving observers in a local Minkowski frame".

Robertson-Walker (RW) comoving observers have constant ##x## in comoving coordinates (to take it simple assume a 1+1 RW spacetime). From the following coordinate transformation into local Minkowski coordinates at event ##p##
$$\begin{align*}\tau &\simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2, \\\xi &\simeq a_0 x (1 + H_0 t).\end{align*}$$
a comoving observer at proper distance ##d_0## from ##\xi = 0## at ##\tau=0## (i.e. on the spacelike hypersurface ##\tau=0##) has ##\xi = d_0## coordinate, hence ##x= d_0 / a_0##. Therefore such comoving observer's worldline in comoving coordinates is given by ##x= d_0 / a_0## constant and varying ##t##.

Substituting it into the transformation above yields in ##(\xi, \tau)## local Minkowski coordinates
$$\xi \simeq d_0 (1 + H_0 t)$$
However in the Insight it is given by
$$\xi \simeq d_0 (1 + H_0 \tau)$$
From where the above come from ? Thanks.
 
Last edited:
Physics news on Phys.org
They are the same to the ordered considered in the ##\simeq## relation.
 
Orodruin said:
They are the same to the ordered considered in the ##\simeq## relation.
Ah ok, basically for "small" ##x## the term involving ##x^2## in $$\tau \simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2$$ can be neglected, hence ##\tau \simeq t##.

It makes sense to pick "small" values for ##x## since the derivation of the transformation from RW coordinates to local Minkowski coordinates at point/event ##p## employs the assumption ##x^{\alpha} = 0## at ##p##.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top