Undergrad Follow-up on the Expanding Universe Insight article

Click For Summary
The discussion focuses on the transformation of Robertson-Walker comoving observers into local Minkowski coordinates, specifically addressing a discrepancy in the Insight article regarding the relationship between the coordinates. It clarifies that for small values of ##x##, the term involving ##x^2## in the transformation can be neglected, allowing the approximation ##\tau \simeq t##. This simplification is justified since the derivation assumes ##x^{\alpha} = 0## at the event ##p##. The participants agree that the expressions for ##\xi## in both the discussion and the Insight are consistent under the assumption of small ##x##. Overall, the conversation emphasizes the importance of the assumptions made in the coordinate transformation process.
cianfa72
Messages
2,918
Reaction score
306
TL;DR
About the form of RW comoving observer worldline in local Minkowski frame at event p.
Hi, reading this Insight raised a doubt regarding the section "Comoving observers in a local Minkowski frame".

Robertson-Walker (RW) comoving observers have constant ##x## in comoving coordinates (to take it simple assume a 1+1 RW spacetime). From the following coordinate transformation into local Minkowski coordinates at event ##p##
$$\begin{align*}\tau &\simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2, \\\xi &\simeq a_0 x (1 + H_0 t).\end{align*}$$
a comoving observer at proper distance ##d_0## from ##\xi = 0## at ##\tau=0## (i.e. on the spacelike hypersurface ##\tau=0##) has ##\xi = d_0## coordinate, hence ##x= d_0 / a_0##. Therefore such comoving observer's worldline in comoving coordinates is given by ##x= d_0 / a_0## constant and varying ##t##.

Substituting it into the transformation above yields in ##(\xi, \tau)## local Minkowski coordinates
$$\xi \simeq d_0 (1 + H_0 t)$$
However in the Insight it is given by
$$\xi \simeq d_0 (1 + H_0 \tau)$$
From where the above come from ? Thanks.
 
Last edited:
Physics news on Phys.org
They are the same to the ordered considered in the ##\simeq## relation.
 
Orodruin said:
They are the same to the ordered considered in the ##\simeq## relation.
Ah ok, basically for "small" ##x## the term involving ##x^2## in $$\tau \simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2$$ can be neglected, hence ##\tau \simeq t##.

It makes sense to pick "small" values for ##x## since the derivation of the transformation from RW coordinates to local Minkowski coordinates at point/event ##p## employs the assumption ##x^{\alpha} = 0## at ##p##.
 
Last edited:
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K