B For what elements does Born–Oppenheimer approximation fail the most?

Lotto
Messages
251
Reaction score
16
TL;DR Summary
We can consider atomic nucleus fixed, so we suppose it doesn't move. But for what elements is Born–Oppenheimer approximation the least accurate (the nucleus moves a "a lot")?
I would say that for the elements with the lowest atomic numbers, because these elements have their nuclei the lightest and so they can move more and their movement influence electrons more than in some heavier elements, whose nuclei move less. Am I right or not?
 
Physics news on Phys.org
I don't understand the question. The BO approximation applies to molecules, not individual atoms, so I don't understand the consideration of elements.

Also, saying that the BO approximation is "nuclei don't move" is an oversimplification (although it is used often in elementary introductions to the subject). It is more that variations of electronic wave functions with respect to nuclear motion are neglected. In many molecules one will find, for example, crossing electronic states where the BO approximation breaks down. See for instance conical intersection.
 
  • Like
Likes dextercioby and vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top