For what range of x is (e^x-1)/2x=0.5 correct to 15 decimal digits?

  • Thread starter Thread starter ver_mathstats
  • Start date Start date
  • Tags Tags
    Range
ver_mathstats
Messages
258
Reaction score
21
Homework Statement
For what range of x is (e^x-1)/2x=0.5 correct to 15 decimal digits?
Relevant Equations
(e^x-1)/2x=0.5
We have ex=1 + x + x2/2 + x3/3! + ...

ex - 1 = x + x2/2 + x3/3! + ...

(ex - 1)/(2x) = 0.5 + x/4 + x2/(2⋅3!) + ...

((ex - 1)/(2x)) - 0.5 = + x/4 + x2/(2⋅3!) + ...

After this, I am unsure of how to proceed to find my error any help would be appreciated thank you. Would we just be trying to isolate x, but that seems incorrect?
 
Physics news on Phys.org
ver_mathstats said:
Homework Statement:: For what range of x is (e^x-1)/2x=0.5 correct to 15 decimal digits?
Relevant Equations:: (e^x-1)/2x=0.5

We have ex=1 + x + x2/2 + x3/3! + ...

ex - 1 = x + x2/2 + x3/3! + ...

(ex - 1)/(2x) = 0.5 + x/4 + x2/(2⋅3!) + ...

((ex - 1)/(2x)) - 0.5 = + x/4 + x2/(2⋅3!) + ...

After this, I am unsure of how to proceed to find my error any help would be appreciated thank you. Would we just be trying to isolate x, but that seems incorrect?
Yes, that's incorrect. You're not going to be able to solve for x in any of those equations.
It's better to write your last equation as ##\frac{e^x - 1}{2x} = 0.5 + \frac x 4 + \frac {x^2}{12} + \dots##. The dominant variable term on the right side is the ##\frac x 4## term. For small values of x, the ##x^2## and higher-degree terms will be relatively insignificant. If you can make ##\frac x 4## small enough, the contributions of the higher-degree terms shouldn't make any difference.

So how small should ##\frac x 4## be so that its contribution won't affect the first 15 decimal digits of your approximation?
 
Last edited:
How precisely do you have to specify ##x##?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top