- #1
Mnemonic
- 21
- 0
Homework Statement
Consider a small, spherical particle of radius r located in space a distance R = 3.75 × 1011-m from the Sun. Assume the particle has a perfectly absorbing surface and a mass density of ρ = 3.8-g/cm3. Use S = 214 W/m2 as the value of the solar intensity at the location of the particle. Calculate the value of r for which the particle is in equilibrium between the gravitational force and the force exerted by solar radiation. The mass of the Sun is 2.0 × 1030-kg.
Homework Equations
F(g)=Gm1m2/r2
mass of particle equals mass density/Volume=3800/(4/3*Pi*r2)
F(Solar)=C*S*I/c
where C=1 due to complete absorption, S equals cross-sectional area (Pi*[rSUP]2[/SUP]), c equals speed of light
The Attempt at a Solution
F(Solar)=F(g)
Pi*r2/3e8=6.67e-11*2e30*3800/(3.75e11*4/3*Pi*r3)
r=790238.5
Have I used the right Solar radiation equation?
Does this look right?