Forces acting on a moving crane

  • Thread starter Thread starter Thickmax
  • Start date Start date
  • Tags Tags
    Crane Forces
AI Thread Summary
The discussion focuses on understanding the forces acting on a moving crane, particularly the balance of driving and resistance forces. Participants emphasize the importance of correctly applying signs and conventions when transforming vector equations into algebraic forms. The equation for the crane's motion is established as the sum of horizontal forces being zero, leading to an algebraic expression that can be solved for friction. There is a clarification on simplifying fractions in algebra, highlighting that multiplying the numerator and denominator by the same value maintains the equality. The conversation concludes with a recognition of the need for clarity in simplification processes, even if the final answers remain equivalent.
Thickmax
Messages
31
Reaction score
8
Homework Statement
Engineering course top up physics module
Relevant Equations
See below
1624797748817.png
Can someone please help me understand where I am going wrong.

I've checked my answer many times and do not understand what I am missing
 
Physics news on Phys.org
You probably made an error with signs. Remember that ##F_{resistance} \propto - \vec{e_x}## while ##F_{driving} \propto \vec{e_x}##.
 
  • Like
Likes Delta2
answer is apparently
1/(M*g*v)*(P-C*v^3) No idea how this is the case
 
  • Like
Likes Delta2
Thickmax said:
answer is apparently
1/(M*g*v)*(P-C*v^3) No idea how this is the case

Since ##\vec{F}_{total}.\vec{e}_y = 0##, we have $$\vec{F}_{N} = mg \vec{e}_y$$ $$\vec{F}_{Friction} = - \mu mg \vec{e_x}$$ and $$\vec{F}_{drag} = - C v^2 \vec{e}_x$$ As you did for your answer you then take ##\vec{F}_{total}.\vec{e}_x = 0## adn resolve the equation for ##\mu##.
 
  • Like
Likes Thickmax
The crane is moving with constant horizontal velocity. Hence the vector sum of the horizontal forces is zero, that is
$$\vec{F}_{resistance}+\vec{F}_{driving}=\vec{0}$$

In order to transform the above vector equation to an algebraic equation , you have to be careful with signs and conventions. If we make the convention that the positive direction is towards right , then $$\vec{F}_{driving}=\frac{P}{v}\hat x$$ that is it is positive force, but $$\vec{F}_{resistance}=-Cv^2\hat x-\mu mg\hat x$$, that is it is negative (towards the left).
Thus the initial vector equation will transform to the algebraic equation
$$-Cv^2-\mu mg+\frac{P}{v}=0$$ which you can solve for ##\mu## and you will get what you saying at post #3.
 
  • Like
Likes Lnewqban and Thickmax
Delta2 said:
The crane is moving with constant horizontal velocity. Hence the vector sum of the horizontal forces is zero, that is
$$\vec{F}_{resistance}+\vec{F}_{driving}=\vec{0}$$

In order to transform the above vector equation to an algebraic equation , you have to be careful with signs and conventions. If we make the convention that the positive direction is towards right , then $$\vec{F}_{driving}=\frac{P}{v}\hat x$$ that is it is positive force, but $$\vec{F}_{resistance}=-Cv^2\hat x-\mu mg\hat x$$, that is it is negative (towards the left).
Thus the initial vector equation will transform to the algebraic equation
$$-Cv^2-\mu mg+\frac{P}{v}=0$$ which you can solve for ##\mu## and you will get what you saying at post #3.
Thanks Very much!

But I'm struggling to simplify the last equation still.

-(Cv^2)-(UMG)+(P/v)=0 = -(Cv^2)+(P/V)=UMG

U=(-(Cv^2)+(P/v))/(MG)

Am I missing something?
 
Thickmax said:
Am I missing something?

No you got it right, you just need one last algebraic step: multiply both the numerator and the denominator of the fraction by v and then you 'll get what you say at post #3.
 
  • Like
Likes Thickmax
Delta2 said:
No you got it right, you just need one last algebraic step: multiply both the numerator and the denominator of the fraction by v and then you 'll get what you say at post #3.
How do you know when to do that? :nb) Is this method called something that i can read up on?

Many thanks again
 
  • Like
Likes Delta2
Thickmax said:
How do you know when to do that? :nb) Is this method called something that i can read up on?
Ehm its fundamental algebraic rule: IF you multiply both the numerator and the denominator of a fraction with the same thing, the fraction remains the same. That is $$\frac{a}{b}=\frac{ac}{bc}$$
 
  • Like
Likes Thickmax
  • #10
Delta2 said:
Ehm its fundamental algebraic rule: IF you multiply both the numerator and the denominator of a fraction with the same thing, the fraction remains the same. That is $$\frac{a}{b}=\frac{ac}{bc}$$
Oh I see now🤦‍♂️But how do you know when to do that? Is it just to tidy up the equation and have ‘one line’ as the numerator?
 
  • #11
Thickmax said:
Oh I see now🤦‍♂️But how do you know when to do that? Is it just to tidy up the equation and have ‘one line’ as the numerator?
Yes you can view it like this.
 
  • Like
Likes Thickmax
  • #12
Thickmax said:
Oh I see now🤦‍♂️But how do you know when to do that? Is it just to tidy up the equation and have ‘one line’ as the numerator?
Yes, it is usual to avoid nested fractions in the simplified form. But more generally, you cannot assume the target form is what you would consider the simplest such. You have to be prepared to check whether there is some way of manipulating the one into the other.
 
  • Like
Likes Thickmax and Delta2
  • #13
Got it! thanks

But then why does the answer have (1/M*G*V)*(P-C*V^3)

Why can't it just be U=(-(CV^3)+(P))/(MGV) = (P-(CV^3))/(MGV)

Think this is a stupid question as I know the answer will be the same, but I don't understand how to know/why you simplify this far.

It doesn't help that I don't know all the rules either ;)
 
  • #14
$$\frac{1}{A}B=\frac{B}{A}$$
 
  • Like
Likes Thickmax

Similar threads

Back
Top