bigubau said:
Condon & Shortley in their famous 1935 book on spectral lines theory mention both available definitions of the associated Laguerre. But they only use the one called above "Pauling". It's probably because the first solution of the H-atom using Schroedinger's equation was given by Schroedinger himself in 1926 and he used the "Pauling" definition. It's used throughout most physics books and the normalization factor with the 3rd power of the factorial comes out precisely if you use the "Pauling" definition.
The formula suggested by the Wikipedia article:
<br />
\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)}\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1)<br />
when applied to the wavefunction
without the 3rd power of the factorial (just the 1st power), shows that the wavefunction is correctly normalized. If it's really the 3rd power, then you can't use this relation:
<br />
\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)}\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1)<br />
Although most quantum mechanics book use the Pauling definition, I'm pretty sure most mathematical physics books use the Wolfram definition. The Wolfram is more natural in that it fits into the typical framework for classical orthogonal polynomials (in the Pauling definition you're taking derivatives of a Rodrigo formula; in the Wolfram scheme you have a Rodrigo formula).
edit: added the solutions in terms of the two different forms
Wolfram form:
\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt {{\left ( \frac{2}{n a_0} \right )}^3\frac{(n-\ell-1)!}{2n[(n+\ell)!]} } e^{- \rho / 2} \rho^{\ell} L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_{\ell}^{m}(\vartheta, \varphi ) <br />
Pauling form:
<br />
\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt {{\left ( \frac{2}{n a_0} \right )}^3\frac{(n-\ell-1)!}{2n[(n+\ell)!]^3} } e^{- \rho / 2} \rho^{\ell} L_{n+\ell}^{2\ell+1}(\rho) \cdot Y_{\ell}^{m}(\vartheta, \varphi ) <br />