Formula for ionization potential reduction

Goldhelmeth
Messages
1
Reaction score
0
Homework Statement
Calculate the ionization potential reduction of He1+ in the framework of the Bohr model and
interpret the results concerning the existence of ground and excited states:
a) in the center of the sun,
b) for the average density of the sun at kTe=1300 eV.
Relevant Equations
*see images
Hello,

Firstly I am not sure of understanding the problem, I believe that this reduction is related to a high density plasma where the free electrons are very close to the ions and so the ions cannot be considered as separate bodies... I also believe it affects the ground energy state of electrons inside hydrogen like atoms (helium +1).
For solving this problem I found that every solutions used the Stewart and Pyatt model. This model uses the debeye lengh. But as you can see it uses an other model... I wished I could provide more to the community to start with but I have been on this problem for hours and I cannot find annything...

Thank you for any help you may provide !
equation.png
 
Physics news on Phys.org
Firstly, I think we can solve the ionization potential of He1+ at ground state (1) easily with the Bohr model, as the atom now have 1 nucleus (with 2 protons) and 1 electron, similar to the Hydro atom with a larger nucleus.

In the sun, I understand that ionized gas (He1+) located in an electric field (a gas discharge plasma) is not an equilibrium system, therefore the Helium atoms might now "ground" at the new excited state, and we can calculate the corresponding ionization potential for both a) and b), thus deriving the reduction in ionization potential by subtracting (1). Although I'm not equipped with enough knowledge to determine the new excited state that of He1+ in a) and b), I think you can visit "Excitation of helium atoms in collisions with plasma electrons in an electric field " by Smirnov, B. M. (2013) to research more on the problem.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top