Formulating Fubini's Theorem for Lebesgue Integrable Functions

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Calculation Integral
Click For Summary
SUMMARY

This discussion focuses on applying Fubini's Theorem to Lebesgue integrable functions, specifically for calculating the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$. Participants explore the double integral $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$, leading to the evaluation of $\int_0^{+\infty} y \sin x e^{-xy} dx$, which results in $\frac{1}{2}$. The discussion emphasizes the correctness of using Fubini's theorem in this context.

PREREQUISITES
  • Understanding of Fubini's Theorem
  • Knowledge of Lebesgue integrable functions
  • Familiarity with double integrals
  • Basic proficiency in evaluating improper integrals
NEXT STEPS
  • Study the application of Fubini's Theorem in various contexts
  • Learn about Lebesgue integration techniques
  • Explore the properties of the sine integral function
  • Investigate the convergence of double integrals
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in advanced integration techniques and the application of Fubini's Theorem to Lebesgue integrable functions.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello!

I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.

There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$

$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$

So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.

So now we got the wanted integral. How do we continue?
 
Physics news on Phys.org
evinda said:
Hello!

I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.

There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$

$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$

So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.

So now we got the wanted integral. How do we continue?

Hey evinda! (Smile)

How about evaluating the integral the other way around?
That is, starting with:
$$\int_0^{+\infty} y \sin x e^{-xy} dx$$
(Wondering)
 
I like Serena said:
Hey evinda! (Smile)

How about evaluating the integral the other way around?
That is, starting with:
$$\int_0^{+\infty} y \sin x e^{-xy} dx$$
(Wondering)

I found that $\int_0^{+\infty} y \sin x e^{-xy} dx=\frac{y}{1+y^2}$ and so $\int_0^1 \int_0^{+\infty} y \sin x e^{-xy} dx dy=\frac{1}{2}$.

Am I right?

So from Fubini's theorem, the initial integral is equal to $\frac{1}{2}$, right?

Could you also help me formulate Fubini's theorem for Lebesgue integrable funtions?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K