MHB Formulating Fubini's Theorem for Lebesgue Integrable Functions

Click For Summary
The discussion focuses on applying Fubini's theorem to evaluate the integral of a specific function involving sine and exponential terms. The integral is transformed into a double integral over the regions (0, +∞) and (0, 1), allowing for the interchange of integration order. The calculation leads to the result that the integral evaluates to 1/2. Participants seek clarification on the formulation of Fubini's theorem for Lebesgue integrable functions, emphasizing its application in this context. The conversation highlights both the mathematical process and the need for a deeper understanding of Fubini's theorem.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello!

I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.

There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$

$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$

So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.

So now we got the wanted integral. How do we continue?
 
Physics news on Phys.org
evinda said:
Hello!

I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.

There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$

$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$

So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.

So now we got the wanted integral. How do we continue?

Hey evinda! (Smile)

How about evaluating the integral the other way around?
That is, starting with:
$$\int_0^{+\infty} y \sin x e^{-xy} dx$$
(Wondering)
 
I like Serena said:
Hey evinda! (Smile)

How about evaluating the integral the other way around?
That is, starting with:
$$\int_0^{+\infty} y \sin x e^{-xy} dx$$
(Wondering)

I found that $\int_0^{+\infty} y \sin x e^{-xy} dx=\frac{y}{1+y^2}$ and so $\int_0^1 \int_0^{+\infty} y \sin x e^{-xy} dx dy=\frac{1}{2}$.

Am I right?

So from Fubini's theorem, the initial integral is equal to $\frac{1}{2}$, right?

Could you also help me formulate Fubini's theorem for Lebesgue integrable funtions?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K