- 2,020
- 843
Hopefully the symbols I am using are standard. I will define them upon request.
I have a theorem that says, given a difference equation [math]\left ( \sum_{j = 0}^m a_j E^j \right ) y_n = \alpha ^n F(n)[/math], we can define a polynomial function [math]\phi (E) = \sum_{j = 0}^m a_j E^j [/math] such that [math]\phi (E) y_n = \alpha ^n F(n)[/math]. I can follow a proof to the following result:
(1) [math]\phi (E) \left ( \alpha ^n F(n) \right ) = \alpha ^n \phi ( \alpha E ) F(n)[/math]
The notes then go on to say, "therefore"
(2) [math]\dfrac{1}{ \phi (E) } \left ( \alpha ^n F(n) \right ) = \alpha ^n \dfrac{1}{ \phi ( \alpha E )} F(n)[/math]
Now, the particular solution to the difference equation is written as [math]y_p = \dfrac{1}{ \phi (E) } \left ( \alpha ^n F(n) \right )[/math] and I can use (2) to evaluate this and get the correct result. So I know that (2) is right, without any typos. But how do I get from (1) to (2)?
More details upon request.
-Dan
I have a theorem that says, given a difference equation [math]\left ( \sum_{j = 0}^m a_j E^j \right ) y_n = \alpha ^n F(n)[/math], we can define a polynomial function [math]\phi (E) = \sum_{j = 0}^m a_j E^j [/math] such that [math]\phi (E) y_n = \alpha ^n F(n)[/math]. I can follow a proof to the following result:
(1) [math]\phi (E) \left ( \alpha ^n F(n) \right ) = \alpha ^n \phi ( \alpha E ) F(n)[/math]
The notes then go on to say, "therefore"
(2) [math]\dfrac{1}{ \phi (E) } \left ( \alpha ^n F(n) \right ) = \alpha ^n \dfrac{1}{ \phi ( \alpha E )} F(n)[/math]
Now, the particular solution to the difference equation is written as [math]y_p = \dfrac{1}{ \phi (E) } \left ( \alpha ^n F(n) \right )[/math] and I can use (2) to evaluate this and get the correct result. So I know that (2) is right, without any typos. But how do I get from (1) to (2)?
More details upon request.
-Dan