Frostman
- 114
- 17
I don't know if you see my last question in the previous post.
$$p^2(\tau)=\gamma(0) (qE_y(1-v_x(0))\tau+mv_y(0))$$
If now I integrate this:
$$\frac{dp^0}{d\tau}=\gamma(0) \frac qm E_yp^2$$
$$p^0(\tau)=\gamma(0) \bigg(\frac qm E_yp^2\tau + m\bigg)$$
##p^2## in this case is ##p^2(0)## or ##p^2(\tau)##? If is ##p^2(\tau)##, why for ##p^0-p^1## we used ##p^0(0)-p^1(0)=\gamma m (1-v_x(0))##?
$$p^2(\tau)=\gamma(0) (qE_y(1-v_x(0))\tau+mv_y(0))$$
If now I integrate this:
$$\frac{dp^0}{d\tau}=\gamma(0) \frac qm E_yp^2$$
$$p^0(\tau)=\gamma(0) \bigg(\frac qm E_yp^2\tau + m\bigg)$$
##p^2## in this case is ##p^2(0)## or ##p^2(\tau)##? If is ##p^2(\tau)##, why for ##p^0-p^1## we used ##p^0(0)-p^1(0)=\gamma m (1-v_x(0))##?