A Fourier coefficients relation to Power Spectral Density

Click For Summary
Fourier coefficients are directly related to Power Spectral Density (PSD) through Parseval's Theorem, which states that the total energy of a signal can be expressed in both time and frequency domains. The theorem demonstrates that the sum of the squares of the Fourier coefficients equals the integral of the square of the signal over time. This relationship highlights the importance of Fourier analysis in signal processing and energy distribution. Wolfram's explanation effectively uses a trigonometric identity to simplify the theorem's application. Understanding this connection is crucial for analyzing signals in various fields, including communications and audio processing.
Skaiserollz89
Messages
9
Reaction score
0
TL;DR
Help deriving a result found in "Numerical Simulation of Optical Wave Propagation" by Jason Schmidt. I'm trying to work out by hand an equation stating that the ensemble average of the squared fourier coefficients of a 2D phase function equals the Power Spectral Density( Phi(fx,fy) multiplied by 1/A, where A is the domain area ( either delta_fx*delta_fy in frequency space, or 1/(L_x*L_y) in real space). I am having trouble seeing how to get this result. Please assist in the derivation.
1685548399868.png

1685548469321.png

1685548546562.png
 
Physics news on Phys.org
I'm setting up an analog power supply. I have the transformer bridge and filter capacitors so far. The transformer puts out 30 volts. I am currently using two parallel power transistors and a variable resistor to set the output. It also has a meter to monitor voltage. The question is this. How do I set up a single transistor to remove whats left of the ripple after the filter capacitors. It has to vary along with the control transistors to be constant in its ripple removing. The bases of the...

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K