A Fourier coefficients relation to Power Spectral Density

Skaiserollz89
Messages
9
Reaction score
0
TL;DR Summary
Help deriving a result found in "Numerical Simulation of Optical Wave Propagation" by Jason Schmidt. I'm trying to work out by hand an equation stating that the ensemble average of the squared fourier coefficients of a 2D phase function equals the Power Spectral Density( Phi(fx,fy) multiplied by 1/A, where A is the domain area ( either delta_fx*delta_fy in frequency space, or 1/(L_x*L_y) in real space). I am having trouble seeing how to get this result. Please assist in the derivation.
1685548399868.png

1685548469321.png

1685548546562.png
 
Physics news on Phys.org
I think it's easist first to watch a short vidio clip I find these videos very relaxing to watch .. I got to thinking is this being done in the most efficient way? The sand has to be suspended in the water to move it to the outlet ... The faster the water , the more turbulance and the sand stays suspended, so it seems to me the rule of thumb is the hose be aimed towards the outlet at all times .. Many times the workers hit the sand directly which will greatly reduce the water...
I don't need cloth simulation. I need to simulate clothing meshes. Made of triangles and I need an answer that someone with High School math can understand. I am actually using the time it takes for someone to answer to create a model with less geometry than the one I have been using. I want clothing that can be removed on a model that will be animated. I don't need stretching or wrinkles on my meshes, I just need gravity. I have an idea of how I could do it, but I don't know how to apply...
Back
Top