Fourier series damped driven oscillator ODE

Click For Summary
SUMMARY

The discussion centers on solving the damped driven oscillator ordinary differential equation (ODE) using Fourier series. Participants demonstrate that by combining summations, one can derive the relationship $-n^2\omega^2C_n + 2\beta in\omega C_n + \omega_0^2 C_n = f_n$ for each coefficient $C_n$. The justification for removing the summations relies on the uniqueness of the Fourier expansion for well-behaved functions. Additionally, the integration technique involving Sturm-Liouville is proposed as a method to validate the solution.

PREREQUISITES
  • Understanding of Fourier series and expansions
  • Knowledge of ordinary differential equations (ODEs)
  • Familiarity with Sturm-Liouville theory
  • Basic concepts of complex analysis
NEXT STEPS
  • Study the properties of Fourier series and their applications in solving ODEs
  • Explore Sturm-Liouville theory and its implications in mathematical physics
  • Learn about the uniqueness of Fourier expansions for different function classes
  • Investigate the methods of solving damped driven oscillators in detail
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on differential equations, particularly those interested in the application of Fourier series to solve oscillatory systems.

Dustinsfl
Messages
2,217
Reaction score
5
$$
-\sum_{n = 0}^{\infty}n^2\omega^2C_ne^{in\omega t} + 2\beta\sum_{n = 0}^{\infty}in\omega C_ne^{in\omega t} + \omega_0^2\sum_{n = 0}^{\infty}C_ne^{in\omega t} = \sum_{n = 0}^{\infty}f_ne^{in\omega t}
$$
How can I justify removing the summations and solving for $C_n$?
$$
-n^2\omega^2C_ne^{in\omega t} + 2\beta in\omega C_ne^{in\omega t} + \omega_0^2C_ne^{in\omega t} = f_ne^{in\omega t}
$$
 
Physics news on Phys.org
dwsmith said:
$$
-\sum_{n = 0}^{\infty}n^2\omega^2C_ne^{in\omega t} + 2\beta\sum_{n = 0}^{\infty}in\omega C_ne^{in\omega t} + \omega_0^2\sum_{n = 0}^{\infty}C_ne^{in\omega t} = \sum_{n = 0}^{\infty}f_ne^{in\omega t}
$$
How can I justify removing the summations and solving for $C_n$?
$$
-n^2\omega^2C_ne^{in\omega t} + 2\beta in\omega C_ne^{in\omega t} + \omega_0^2C_ne^{in\omega t} = f_ne^{in\omega t}
$$
Combining the summations, you can write this as $$\sum_{n = 0}^{\infty}\bigl(-n^2\omega^2C_n + 2\beta in\omega C_n + \omega_0^2 C_n \bigr) e^{in\omega t} = \sum_{n = 0}^{\infty}f_ne^{in\omega t}.$$
Now use the fact that a (reasonably well-behaved) function has a unique Fourier expansion to conclude that the coefficients on each side must be the same, to conclude that $-n^2\omega^2C_n + 2\beta in\omega C_n + \omega_0^2 C_n = f_n$ for each $n.$
 
Opalg said:
Combining the summations, you can write this as $$\sum_{n = 0}^{\infty}\bigl(-n^2\omega^2C_n + 2\beta in\omega C_n + \omega_0^2 C_n \bigr) e^{in\omega t} = \sum_{n = 0}^{\infty}f_ne^{in\omega t}.$$
Now use the fact that a (reasonably well-behaved) function has a unique Fourier expansion to conclude that the coefficients on each side must be the same, to conclude that $-n^2\omega^2C_n + 2\beta in\omega C_n + \omega_0^2 C_n = f_n$ for each $n.$

Could I also just multiple through by $\frac{1}{2\pi}\overline{e^{in\omega t}}$, and by Sturm-Liouville, the summation integrates to 1?
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
Replies
28
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K