Fourier series for a series of functions

  • #1
EnriqueOrtizMartinez
2
0
Homework Statement:
From equations 1) or 2) use the appropriate values of ## \theta ## usually ## (0 ,\frac{\pi }{2},\pi )## , to get to the indicated equation.
Relevant Equations:
1)

## f(\theta )=e^{b\theta }(-\pi <\theta <\pi ) \quad | \quad\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in\theta } ##


2)

##f(\theta )=e^{b\theta }(0<\theta <2\pi )\quad | \quad\frac{e^{2\pi b}-1}{2\pi }\sum_{-\infty }^{\infty }\frac{e^{in\theta }}{b-in}##


Indicated equation:

##\sum_{1 }^{\infty }\frac{(-1)^{n}}{n^{2}+b^{2}}=\frac{\pi }{2b}csch(b\pi )-\frac{1}{2b^{2}}##
## ##

Well I start with equation 1):


## e^{b\theta }=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in\theta } ##

If ## \theta =0 ##



##e^{b(0)}=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in(0) }##



##1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in} ##



Using the conjugate of the complex:



##1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}\frac{b+in}{b+in} ##



## 1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }(-1)^{n}\frac{b+in}{b^{2}+n^{2}}##



## \pi csch(b\pi )=\sum_{-\infty }^{\infty }(-1)^{n}\frac{b+in}{b^{2}+n^{2}}##


Up to now I have only arrived, I do not know if it is for equation 1 to arrive at the result or for equation 2, another doubt that I have is that the summations of equations 1) and 2) tend to ##(-\infty ,\infty ) ## and the result of the summation tends to ## (1,\infty )## , as I do so that the sum of ## (-\infty ,\infty )## tend a ## (1,\infty )## ,my idea was to see if the functions were even or odd but since both are exponential they are not odd or even, they can help me with my problem in advance thanks.
 

Attachments

  • 2.-Fourier.png
    2.-Fourier.png
    7.8 KB · Views: 249

Answers and Replies

  • #2
pasmith
Homework Helper
2022 Award
2,522
1,127
The terms for [itex]n > 0[/itex] and [itex]-n[/itex] are complex conjugates. This reordering of terms is justifiable if you treat the summation as [tex]
\lim_{N \to \infty} \sum_{n = -N}^{N} (-1)^n \frac{b + in}{b^2 + n^2}.[/tex]
 

Suggested for: Fourier series for a series of functions

  • Last Post
Replies
1
Views
308
Replies
24
Views
308
  • Last Post
Replies
0
Views
324
Replies
5
Views
1K
Replies
2
Views
459
Replies
20
Views
576
Replies
2
Views
118
Replies
8
Views
790
Replies
2
Views
379
Replies
2
Views
392
Top