Hey Physics Forums,(adsbygoogle = window.adsbygoogle || []).push({});

Grading an assignment, the current topic is continuous Fourier Transforms. They're trying to prove the convenient property:

[tex] \mathcal{F} \left[ \frac{d^n}{dx^n} f(x) \right] = (i \omega)^n \mathcal{F} \left[ f(x) \right] [/tex]

So there's a simple way to get it:

Let [itex]f(x)[/itex] be represented by it's Inverse Fourier Transform [itex]f(x) = \mathcal{F}^{-1} \left[ g( \omega ) \right] = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega [/itex]

Then,

[tex] \frac{d^n}{d x^n} f(x) = \frac{d^n}{d x^n} \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) \frac{d^n}{d x^n}e^{i \omega x} d \omega = (i \omega)^n \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) e^{i \omega x} d \omega = (i \omega)^n \mathcal{F} \left[ f(x) \right] [/tex]

However, I have some people with a different method. They directly transform the entire expression, and apply integration by parts recursively until they obtain:

[tex] \left. (i \omega)^0 \frac{d^{n-1}}{dx^{n-1}}[f(x)]e^{-i \omega x} + (i \omega)^1 \frac{d^{n-2}}{dx^{n-2}}[f(x)]e^{-i \omega x} + \ldots \hspace{10px} \right|^{\infty}_{-\infty} + (i \omega)^n \int f(x) e^{-i \omega x}dx [/tex]

The claim is that when the delimiter is applied, [itex]\lim_{x \to \pm \infty} e^{-i \omega x} = 0[/itex]. I'm not sure if this is true. [itex]e^{-i \omega x} = \cos(\omega x) - i \sin(\omega x)[/itex] which clearly oscillates. Can anyone else confirm this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier Transform and Limit of Euler's Formula

**Physics Forums | Science Articles, Homework Help, Discussion**