Fourier transform ##f(t) = te^{-at}##

Click For Summary
The discussion revolves around the Fourier transform of the function f(t) = te^{-at}. The initial calculations of the Fourier transform were deemed correct, yielding F(w) = (1/√(2π)) * (1/(-a - iw)^2). The confusion arose when attempting to compute the inverse Fourier transform, leading to questions about potential mistakes in that process. It was clarified that the issue likely lies in the reverse Fourier transform calculation, particularly regarding the singularities and poles involved. Ultimately, the participant identified a pole of order 2 at ω = -α/i, indicating progress in resolving the inverse transform challenge.
DragonBlight
Messages
9
Reaction score
0
Homework Statement
Finding the Fourier transform of ##f(t) = te^{-at}## if t > 0 and ##f(t) = 0## otherwise.
Relevant Equations
##F(w) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} te^{-at}e^{-iwt} dt##
Doing the Fourier transform for the function above I'm getting a result, but since I can't get the function f(t) with the inverse Fourier transform, I'm wondering where I made a mistake.

##F(w) = \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} te^{-t(a + iw)} dt##
By integrating by part, where G = -a - iw
##F(w) = \frac{te^{Gt}}{G}|_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{Gt}}{G} dt##

##= \frac{1}{G^2}##

Thus,
##F(w) = \frac{1}{\sqrt{2 \pi}} \frac{1}{(-a -iw)^2}##
 
Physics news on Phys.org
Is your function ##t^{-at}## as you write in the statement and title or ##t e^{-at}## as you have used in your computation?
 
  • Like
Likes vanhees71 and Delta2
I made I mistake. It's ##te^{-at}##
 
So, here is an alternative way: Fourier's trick (differentiating with respect to a parameter inside the integral)

Let
$$
G(a,\omega) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-at} e^{-i\omega t} dt = -\frac{1}{\sqrt{2\pi}} \left[\frac{e^{-at-i\omega t}}{a+i\omega}\right]_0^\infty = \frac{1}{\sqrt{2\pi}}\frac{1}{a+i\omega}.
$$
Now,
$$
\frac{\partial G}{\partial a} = - \frac{1}{\sqrt{2\pi}}\int_0^\infty t e^{-at} e^{-i\omega t} dt = -F(\omega).
$$
It follows that
$$
F(\omega) = -\frac{1}{\sqrt{2\pi}} \frac{d}{da}\frac{1}{a+i\omega} =\frac{1}{\sqrt{2\pi}} \frac{1}{(a+i\omega)^2}.
$$

Why do you think there is a mistake?
 
DragonBlight said:
since I can't get the function f(t) with the inverse Fourier transform, I'm wondering where I made a mistake.
As @Orodruin has noted, you calculated the Fourier transform correctly, so it sounds like the problem is in your calculation of the reverse Fourier transform. Can you show us your attempt at that?
 
  • Like
Likes Orodruin
DragonBlight said:
I made I mistake. It's ##te^{-at}##
Edited title and Homework Statement to correct this typo.
 
vela said:
As @Orodruin has noted, you calculated the Fourier transform correctly, so it sounds like the problem is in your calculation of the reverse Fourier transform. Can you show us your attempt at that?

##f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{(-\alpha -i\omega)^2} e^{i\omega t} d\omega##

I don't see how to find the residue since the imaginary part is ##\omega##. There's a singularity ##\omega = i \alpha##
I mean, if I had ##(-i\alpha - \omega)## I could find it.

I think I found. if I factor i at the denominator then I have a pole of order 2 at ##\omega = \frac{- \alpha}{i}##
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K