Fourier transform ##f(t) = te^{-at}##

Click For Summary
SUMMARY

The discussion focuses on the Fourier transform of the function f(t) = te^{-at}. The correct Fourier transform is derived as F(w) = \frac{1}{\sqrt{2 \pi}} \frac{1}{(-a - iw)^2}. The confusion arises in the inverse Fourier transform, where participants clarify that the mistake lies in the calculation of f(t) from F(w). The correct inverse Fourier transform is f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{(-\alpha - i\omega)^2} e^{i\omega t} d\omega, which involves identifying the singularity at ω = iα.

PREREQUISITES
  • Understanding of Fourier transforms and inverse Fourier transforms
  • Familiarity with complex analysis, particularly residue theory
  • Knowledge of integration techniques, including integration by parts
  • Basic understanding of Laplace transforms and their relation to Fourier transforms
NEXT STEPS
  • Study the properties of Fourier transforms, focusing on theorems related to inverse transforms
  • Learn about residue calculus and its application in evaluating complex integrals
  • Explore the differentiation under the integral sign technique, often referred to as Fourier's trick
  • Investigate the implications of singularities in Fourier analysis and their impact on transform calculations
USEFUL FOR

Mathematicians, physicists, and engineers involved in signal processing, as well as students studying Fourier analysis and complex variables.

DragonBlight
Messages
9
Reaction score
0
Homework Statement
Finding the Fourier transform of ##f(t) = te^{-at}## if t > 0 and ##f(t) = 0## otherwise.
Relevant Equations
##F(w) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} te^{-at}e^{-iwt} dt##
Doing the Fourier transform for the function above I'm getting a result, but since I can't get the function f(t) with the inverse Fourier transform, I'm wondering where I made a mistake.

##F(w) = \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} te^{-t(a + iw)} dt##
By integrating by part, where G = -a - iw
##F(w) = \frac{te^{Gt}}{G}|_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{Gt}}{G} dt##

##= \frac{1}{G^2}##

Thus,
##F(w) = \frac{1}{\sqrt{2 \pi}} \frac{1}{(-a -iw)^2}##
 
Physics news on Phys.org
Is your function ##t^{-at}## as you write in the statement and title or ##t e^{-at}## as you have used in your computation?
 
  • Like
Likes vanhees71 and Delta2
I made I mistake. It's ##te^{-at}##
 
So, here is an alternative way: Fourier's trick (differentiating with respect to a parameter inside the integral)

Let
$$
G(a,\omega) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-at} e^{-i\omega t} dt = -\frac{1}{\sqrt{2\pi}} \left[\frac{e^{-at-i\omega t}}{a+i\omega}\right]_0^\infty = \frac{1}{\sqrt{2\pi}}\frac{1}{a+i\omega}.
$$
Now,
$$
\frac{\partial G}{\partial a} = - \frac{1}{\sqrt{2\pi}}\int_0^\infty t e^{-at} e^{-i\omega t} dt = -F(\omega).
$$
It follows that
$$
F(\omega) = -\frac{1}{\sqrt{2\pi}} \frac{d}{da}\frac{1}{a+i\omega} =\frac{1}{\sqrt{2\pi}} \frac{1}{(a+i\omega)^2}.
$$

Why do you think there is a mistake?
 
DragonBlight said:
since I can't get the function f(t) with the inverse Fourier transform, I'm wondering where I made a mistake.
As @Orodruin has noted, you calculated the Fourier transform correctly, so it sounds like the problem is in your calculation of the reverse Fourier transform. Can you show us your attempt at that?
 
  • Like
Likes Orodruin
DragonBlight said:
I made I mistake. It's ##te^{-at}##
Edited title and Homework Statement to correct this typo.
 
vela said:
As @Orodruin has noted, you calculated the Fourier transform correctly, so it sounds like the problem is in your calculation of the reverse Fourier transform. Can you show us your attempt at that?

##f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{(-\alpha -i\omega)^2} e^{i\omega t} d\omega##

I don't see how to find the residue since the imaginary part is ##\omega##. There's a singularity ##\omega = i \alpha##
I mean, if I had ##(-i\alpha - \omega)## I could find it.

I think I found. if I factor i at the denominator then I have a pole of order 2 at ##\omega = \frac{- \alpha}{i}##
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K