MHB Fractional linear transformation--conformal mapping

Click For Summary
The discussion focuses on determining the necessary and sufficient conditions for the fractional linear transformation f(z) = (az + b) / (cz + d) to map the upper half-plane to itself. It is established that the imaginary part of the transformed function must remain positive when the imaginary part of z is positive. The key condition derived is that ad must be greater than bc (ad > bc). This condition ensures that the transformation preserves the upper half-plane. The conversation emphasizes the importance of analyzing the imaginary part of the numerator after multiplying by the complex conjugate of the denominator.
Dustinsfl
Messages
2,217
Reaction score
5
Find necessary and sufficient conditions on the real numbers $a$, $b$, $c$, and $d$ such that the fractional linear transformation
$$
f(z) = \frac{az + b}{cz + d}
$$
maps the upper half plane to itself.

I just need some guidance on starting this one since I am not sure on how to begin.
 
Physics news on Phys.org
dwsmith said:
Find necessary and sufficient conditions on the real numbers $a$, $b$, $c$, and $d$ such that the fractional linear transformation
$$
f(z) = \frac{az + b}{cz + d}
$$
maps the upper half plane to itself.

I just need some guidance on starting this one since I am not sure on how to begin.
Begin by multiplying top and bottom by the complex conjugate of the denominator: $$f(z) = \dfrac{az + b}{cz + d} = \dfrac{(az + b)(c\overline{z} + d)}{(cz + d)(c\overline{z} + d)}.$$

The denominator in that last fraction is real, so you need to find the imaginary part of the numerator and investigate what makes it positive whenever $z$ has positive imaginary part.
 
Opalg said:
Begin by multiplying top and bottom by the complex conjugate of the denominator: $$f(z) = \dfrac{az + b}{cz + d} = \dfrac{(az + b)(c\overline{z} + d)}{(cz + d)(c\overline{z} + d)}.$$

The denominator in that last fraction is real, so you need to find the imaginary part of the numerator and investigate what makes it positive whenever $z$ has positive imaginary part.

So $ad > bc$
 
dwsmith said:
So $ad > bc$
(Yes)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K