Hi everyone,(adsbygoogle = window.adsbygoogle || []).push({});

I'm currently looking to solve an equation of the general form: [itex] \sqrt{x^2-y^2}+\sqrt{\epsilon x^2-y^2} = \beta[/itex]. I'm interested in solving this equation for [itex]x[/itex] assuming [itex]y>0[/itex], [itex]\epsilon>1[/itex] and [itex]\beta \in \mathbb{C}[/itex]. By squaring the equation twice I can find four potential solutions of the form:

[tex]x = (-1)^n \sqrt{ \frac{\beta^2}{(1-\epsilon)^2}\Big[1+\epsilon+(-1)^m \frac{2}{\beta}\sqrt{\epsilon y^2(2-\epsilon)+\epsilon\beta^2-y^2}\Big]} \ \ \ \ \ \ \ \mathrm{for}\ \{n,m\}\in \{1,2\}.[/tex]

Now, I have tested these solutions numerically for parameters roughly in the range [itex]y\in ]1.67, 2[ [/itex] and with [itex] \epsilon \in ]1.01, 4[ [/itex]. Generally, I seem to be getting proper solutions if [itex]|\beta|[/itex] is "large" - but if I set e.g. [itex]y = 1.9[/itex], [itex]\epsilon = 2[/itex] and [itex] \beta = 0.02 + i 0.01[/itex] then the solutions are wrong.

I'm consequently quite convinced that [itex] \sqrt{x^2-y^2}+\sqrt{\epsilon x^2-y^2} = \beta[/itex] only has solutions for certain parameters choices - what I want to find out is; can I analytically express when the equation has a solution? I.e. when is the solution domain of the equation empty?

I'll look forward to reading your replies!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fractional power equation. Solution domain.

**Physics Forums | Science Articles, Homework Help, Discussion**