MHB Fractions/brackets/parentheses and powers.

  • Thread starter Thread starter Jackie In Italy
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion focuses on simplifying a complex mathematical expression involving fractions, parentheses, and powers. The expression provided is (-1/2 - 1/3)^2 . (2/5 - 2)^2 + [(7/9 - 2/3) : (1/2 - 9/22)] - 5/6(2 + 2/5). Key steps in the simplification process include applying the order of operations: simplifying inside parentheses first, then handling exponents, followed by multiplication and division, and finally addition and subtraction. The final result of the expression is determined to be 1.

PREREQUISITES
  • Understanding of fractions and their operations
  • Knowledge of the order of operations (PEMDAS/BODMAS)
  • Ability to work with exponents and powers
  • Familiarity with mathematical notation and simplification techniques
NEXT STEPS
  • Study the order of operations in mathematics (PEMDAS/BODMAS)
  • Learn how to simplify expressions with fractions
  • Practice solving problems involving exponents and powers
  • Explore mathematical notation and how to use LaTeX for formatting equations
USEFUL FOR

Students, parents assisting with math homework, and educators looking for strategies to teach fractions, parentheses, and powers in algebra.

Jackie In Italy
Messages
2
Reaction score
0
My daughter has some maths homework for the Christmas holidays and with a test when she returns next week but I really don't understand how to do this kind of maths and she doesn't understand it either. She has a page of exercises to do but if someone could please help me with one by explaining how to do it, I would be most grateful.
Here is one of the exercises:

(- 1/2 - 1/3)^2 . (2/5 -2)^2 +[(7/9 - 2/3) : (1/2 - 9/22) ] - 5/6 (2+ 2/5)

Sorry I couldn't type the fractions on my computer any better than above. ^2 is to the power of 2 as I couldn't put a small 2 high up.
The dot . is actually in the middle not at the baseline in the exercise.
 
Mathematics news on Phys.org
Re: Help needed with fractions/brackets/parentheses and powers.

Jackie In Italy said:
My daughter has some maths homework for the Christmas holidays and with a test when she returns next week but I really don't understand how to do this kind of maths and she doesn't understand it either. She has a page of exercises to do but if someone could please help me with one by explaining how to do it, I would be most grateful.
Here is one of the exercises:

(- 1/2 - 1/3)^2 . (2/5 -2)^2 +[(7/9 - 2/3) : (1/2 - 9/22) ] - 5/6 (2+ 2/5)

Sorry I couldn't type the fractions on my computer any better than above. ^2 is to the power of 2 as I couldn't put a small 2 high up.
The dot . is actually in the middle not at the baseline in the exercise.

Hi Jackie from Italy! Welcome to MHB!

For starters, do you mean to simplify:

$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}- \frac{5}{6\left(2+\frac{2}{5}\right)}$

or

$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}- \frac{5\left(2+\frac{2}{5}\right)}{6}$

P.S. You can quote my reply to see how to formulate the mathematics expressions in latex. :D
 
Re: Help needed with fractions/brackets/parentheses and powers.

anemone said:
Hi Jackie from Italy! Welcome to MHB!

For starters, do you mean to simplify:

$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}- \frac{5}{6\left(2+\frac{2}{5}\right)}$

or

$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}- \frac{5\left(2+\frac{2}{5}\right)}{6}$

P.S. You can quote my reply to see how to formulate the mathematics expressions in latex. :D

Hi,

Thanks for your reply.

I am not sure as it is just written as you wrote except the ending

- - - Updated - - -

Jackie In Italy said:
Hi,

Thanks for your reply.

I am not sure as it is just written as you wrote except the ending

$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}-\frac{5}{6} (2+\frac{2}{5} )$

- - - Updated - - -

ps. thanks for your help with the latex!
 
Re: Help needed with fractions/brackets/parentheses and powers.

Jackie In Italy said:
$\left(-\frac{1}{2}-\frac{1}{3}\right)^2 \cdot \left(\frac{2}{5}-2\right)^2 +\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{2}-\frac{9}{22}}-\frac{5}{6} (2+\frac{2}{5} )$

In this case, what you've to exercise cautious with is all about the order of operations. It's a standard that defines the order in which you should simplify the given expression with a combination of different operations.

First, we should always simplify the inside of parentheses before dealing with the exponent of the set of parentheses.

Second, we simplify the exponent of a set of parentheses before we multiply, divide, add, or subtract it.

Next, we simplify multiplication and division in the order that they appear from left to right.

Last, we simplify addition and subtraction in the order that they appear from left to right.

$=\color{red}\left(-\dfrac{1}{2}-\dfrac{1}{3}\right)^2 \cdot \left(\dfrac{2}{5}-2\right)^2 \color{black}+\dfrac{\dfrac{7}{9}-\dfrac{2}{3}}{\dfrac{1}{2}-\dfrac{9}{22}}-\dfrac{5}{6} \color{red}(2+\dfrac{2}{5} )$

$=\color{red}\left(-\dfrac{5}{6}\right)^2 \cdot \left(-\dfrac{8}{5}\right)^2 \color{black}+\dfrac{\dfrac{7}{9}-\dfrac{2}{3}}{\dfrac{1}{2}-\dfrac{9}{22}}-\dfrac{5}{6} \color{red}(\dfrac{12}{5} )$

$=\color{red}\left(\dfrac{5}{6}\right)\left(\dfrac{5}{6}\right) \cdot \left(\dfrac{8}{5}\right)\left(\dfrac{8}{5}\right) \color{black}+\dfrac{\dfrac{7}{9}-\dfrac{2}{3}}{\dfrac{1}{2}-\dfrac{9}{22}}-\dfrac{\cancel{5}^1}{\cancel{6}} \color{red}(\dfrac{\cancel{12}^2}{\cancel{5}} )$

$=\color{red}\left(\dfrac{\cancel{5}}{\cancel{6}^3}\right)\left(\dfrac{\cancel{5}}{\cancel{6}^3}\right) \cdot \left(\dfrac{\cancel{8}^4}{\cancel{5}}\right)\left(\dfrac{\cancel{8}^4}{\cancel{5}}\right) \color{black}+\dfrac{\dfrac{7}{9}-\dfrac{2}{3}}{\dfrac{1}{2}-\dfrac{9}{22}}-\color{red}\dfrac{2}{1}$

$=\color{red}\left(\dfrac{4\cdot 4}{3\cdot 3}\right) \color{black}+\dfrac{\dfrac{7}{9}-\dfrac{2}{3}}{\dfrac{1}{2}-\dfrac{9}{22}}-\color{red}2$

$=\color{red}\dfrac{16}{9} \color{black}+\color{blue}\dfrac{\dfrac{1}{9}}{\dfrac{1}{11}}-\color{red}2$

$=\color{red}\dfrac{16}{9} \color{black}+\color{blue}\dfrac{1}{9}\div\dfrac{1}{11}-\color{red}2$

$=\color{red}\dfrac{16}{9} \color{black}+\color{blue}\dfrac{1}{9}\times\dfrac{11}{1}-\color{red}2$

$=\color{red}\dfrac{16}{9} \color{black}+\color{blue}\dfrac{11}{9}-\color{red}2$

$=\color{red}\dfrac{16+11}{9} \color{black}-\color{red}2$

$=\color{red}\dfrac{27}{9} \color{black}-\color{red}2$

$=\color{red}3 \color{black}-\color{red}2$

$=1$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K