Free variables for a matrix in REF

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Matrix Variables
AI Thread Summary
The discussion centers on identifying free variables in a matrix in reduced row echelon form (REF). The second and fifth variables, denoted as b and e, are confirmed to be free, allowing them to take any real values. The leading variables a, c, and d can be expressed in terms of b and e, indicating their dependence on these free variables. The conversation also touches on the notation used to represent these relationships and emphasizes that the system of equations derived from the matrix does not yield a unique solution but rather a parametric solution involving b and e. Overall, the analysis illustrates the nature of free variables in linear algebra and their role in defining solutions to systems of equations.
member 731016
Homework Statement
Please see below
Relevant Equations
Row operations
For this,
1681506321396.png


I am not sure what the '2nd and 5th the variables' are. Dose someone please know whether the free variables ##2, 0, 0## from the second column and ##5, 8, \pi##? Or are there only allowed to be one free variable for each column so ##2## and ##5## for the respective columns.

Also for,
1681507460967.png

Why can b and d be free so are parametric and take on any value in the domain of real numbers? Could a be written as ##a(b,d) = 3b - 7d + 11 b,d ∈ ℝ## in other words a is leading so can take on any value since it is a function of b and d?

Source: https://math.stackexchange.com/questions/720971/what-do-free-variable-and-leading-variables-mean

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Row operations

For this,
View attachment 324911

I am not sure what the '2nd and 5th the variables' are. Dose someone please know whether the free variables ##2, 0, 0## from the second column and ##5, 8, \pi##? Or are there only allowed to be one free variable for each column so ##2## and ##5## for the respective columns.
Note that "dose" and "does" are different words. A "dose" is a specified amount of medicine. The word you want is "does" as in "I do", "you do", "he/she/it does" and so on. I've noticed this error in at least one other thread of yours.

Assuming the variables, which aren't shown, are a, b, c, d, and e, the 2nd and 5th variables would be b and e. The variable b multiplies the vector in the 2nd column. The variable e multiplies the vector in the 5th column.
ChiralSuperfields said:
Also for,
View attachment 324916
Why can b and d be free so are parametric and take on any value in the domain of real numbers? Could a be written as ##a(b,d) = 3b - 7d + 11 b,d ∈ ℝ## in other words a is leading so can take on any value since it is a function of b and d?
I don't know what your notation above is supposed to mean. What you don't seem to understand is that the augmented matrix in your question is just shorthand for this system of equations:

##a + 2b + 3c + 4d + 5e = 6##
##.......... c + 7d + 8e = 9##
##..............d + \pi e = \sqrt 2##

The leading variables here are in the 1st, 3rd, and 4th columns; namely a, c, and d. So each of these can be written in terms of b and e, the 2nd and 5th variables.
ChiralSuperfields said:
 
  • Like
Likes berkeman, member 731016 and FactChecker
Mark44 said:
Note that "dose" and "does" are different words. A "dose" is a specified amount of medicine. The word you want is "does" as in "I do", "you do", "he/she/it does" and so on. I've noticed this error in at least one other thread of yours.
Thank you for your reply @Mark44! Sorry, I get those two words confused. I'll try look at for that in the future.

Mark44 said:
Assuming the variables, which aren't shown, are a, b, c, d, and e, the 2nd and 5th variables would be b and e. The variable b multiplies the vector in the 2nd column.
Ah true I think I see what you mean. I was saying that ##2,0,0## were free variables when they are scalar multiples of variable ##b##. I think the only way to prove that ##b## and ##e## are free (parametric) is to solve the matrix in REF then try to solve for the values for ##b## and ##e##, however, we won't be able to as there is not enough information. My textbook says that we assign a parameter to each free variable, and that Parmeter varies over the real numbers. Do you please know of a better way to explain that?

Mark44 said:
The variable e multiplies the vector in the 5th column.
I don't know what your notation above is supposed to mean. What you don't seem to understand is that the augmented matrix in your question is just shorthand for this system of equations:
Yeah I was just trying use notation to show that a was a function of b and d.
Mark44 said:
##a + 2b + 3c + 4d + 5e = 6##
##.......... c + 7d + 8e = 9##
##..............d + \pi e = \sqrt 2##

The leading variables here are in the 1st, 3rd, and 4th columns; namely a, c, and d. So each of these can be written in terms of b and e, the 2nd and 5th variables.
Many thanks!
 
ChiralSuperfields said:
I think the only way to prove that b and e are free (parametric) is to solve the matrix in REF then try to solve for the values for b and e, however, we won't be able to as there is not enough information.
You won't be able to solve for a unique solution, but you can get solutions that involve parameters.

The REF (reduced echelon form) matrix you show in post #1 is not completely reduced. An RREF (reduced row echelon form) matrix has 0 entries above and below each leading row entry.

a+2b+3c+4d+5e=6
..........c+7d+8e=9
..............d+πe=##\sqrt 2##

In augmented matrix form, the system above is
##\begin{bmatrix} 1 & 2 & 3 & 4 & 5 &| & 6\\
0 & 0 & 1 & 7 & 8 & | & 9\\
0 & 0 & 0 & 1 & \pi & | & \sqrt 2 \end{bmatrix}##

As an RREF augmented matrix it becomes
##\begin{bmatrix} 1 & 2 & 0 & 0 & r &| & s\\
0 & 0 & 1 & 0 & t & | & u\\
0 & 0 & 0 & 1 & v & | & w \end{bmatrix}##
Note that to save myself some work I've replaced some of the values with the letters r, s, t, u, v, and w.
From the above, the solution can be seen as
a = -2b - re + s
b = b + 0e ------- I.e., b is a free variable that equals itself
c = 0b -te + u
d = 0b - ve + w
e = 0b + 1e ------ e is a free variable that equals itself

The above can be rewritten as a vector equation like so:
##\begin{bmatrix}a\\b\\c\\d\\e\end{bmatrix} = b\begin{bmatrix}-2\\1 \\0 \\0\\0 \end{bmatrix} + e\\
\begin{bmatrix} -r\\0\\ -t \\-v \\1 \end{bmatrix} + \begin{bmatrix} s \\ 0 \\ u \\ w \\ 0 \end{bmatrix}##
b and e (the 2nd and 5th variables) are free, and can be set arbitrarily.

Geometrically, the vector equation above represents a plane in 5-dimensional space.
 
Last edited:
  • Like
Likes member 731016
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top