Fun Puzzles: Test Your Math Skills!

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Fun Skills Test
Click For Summary
SUMMARY

The forum discussion revolves around solving complex mathematical series, specifically five distinct infinite series. The first series evaluates to \(2\sqrt{e}\) using properties of exponential functions and factorials. The second series simplifies to \(e(e-1)\) through manipulation of summation indices and factorials. The third series results in \(f(\ln{3}) = 28\) by applying the exponential function. The fourth series converges to \(\frac{1}{1-x}\) through a telescoping series approach, while the fifth series also resolves to \(\frac{1}{1-x}\) using product expansions.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with factorial notation and properties
  • Knowledge of exponential functions and their series expansions
  • Basic skills in manipulating summation indices
NEXT STEPS
  • Explore advanced techniques in series convergence, such as the Ratio Test
  • Study the properties of exponential functions and their derivatives
  • Learn about generating functions and their applications in combinatorics
  • Investigate the use of Taylor series in approximating functions
USEFUL FOR

Mathematicians, students studying calculus or analysis, and anyone interested in advanced problem-solving techniques in infinite series.

sbhatnagar
Messages
87
Reaction score
0
Fun Problems! Evaluate the following:

1. \( \displaystyle \sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

2. \( \displaystyle \sum_{n=1}^{\infty}\frac{1+2+2^2+\cdots+2^{n-1}}{n!}\)

3. \( \displaystyle \sum_{n=1}^{\infty}\frac{(1+3^n)\ln^n(3)}{n!}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

5.\( \displaystyle \sum_{n=0}^{\infty}\dfrac{\displaystyle 2^n x^{x^{2^n}-1}}{\displaystyle 1+x^{2^n}} \)
 
Last edited:
Physics news on Phys.org
Write first series as $\displaystyle\sum\limits_{n=1}^{\infty }{\sum\limits_{j=1}^{n}{\frac{1}{{{2}^{n-1}}(j-1)!}}}=\sum\limits_{j=1}^{\infty }{\sum\limits_{n=j}^{\infty }{\frac{1}{{{2}^{n-1}}(j-1)!}}},$ we can reverse order of summation because of the positivity of the terms of the double series, so now things are straighforward.

You can do similar stuff on second series. Third series is easy by using the expansion of $e^x.$
 
Last edited:
sbhatnagar said:
2. \( \displaystyle \sum_{n=1}^{\infty}\frac{1+2+2^2+\cdots+2^{n-1}}{n!}\)
$\displaystyle \sum_{n \ge 1}~\sum_{0 \le k \le n-1}\frac{2^k}{n!} = \sum_{n \ge 1}\frac{2^n-1}{n!} = \sum_{n \ge 0}\frac{2^n}{n!}-\sum_{n \ge 0}\frac{1}{n!} = e(e-1).$
 
1. \( \displaystyle \sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

Solution to Problem 1:

Let \( \displaystyle S=\sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\).

Let \( \displaystyle t_{n}=\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

\( \displaystyle \begin{align*} t_{n+1} &= \frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!}+\dfrac{1}{(n)!} \right)}{2^{n}} \\ t_{n+1} &= \frac{1}{2}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!}+\dfrac{1}{(n)!} \right)}{2^{n-1}} \\ t_{n+1} &= \frac{1}{2}t_n +\frac{1}{2^n n!} \\ \sum_{n=0}^{\infty}t_{n+1} &=\frac{1}{2}\sum_{n=0}^{\infty}t_n + \sum_{n=0}^{\infty} \frac{1}{2^n n!} \\ S & =\frac{S}{2}+\sqrt{e} \\ S &= \boxed{2\sqrt{e}}\end{align*}\)

Try solving the last two problems. They are very tricky. :)
 
My approach for first series is pretty short, the next step is $\displaystyle\sum\limits_{j = 1}^\infty {\frac{1}{{{2^{j - 1}}(j - 1)!}}\sum\limits_{n = 0}^\infty {\frac{1}{{{2^n}}}} } ,$ then combining the value of both series the result equals $2\sqrt e.$
 
sbhatnagar said:
Try solving the last two problems. They are very tricky. :)
Don't post solutions yet. I'm working on them. (Nod)
Are you sure the last one is correct, though?


---------- Post added at 01:45 AM ---------- Previous post was at 12:00 AM ----------

$\displaystyle \begin{aligned} 3. ~f(x) & = \sum_{n \ge 1}\frac{(1+3^n)x^n}{n!} = \sum_{n \ge 1}\frac{x^n}{n!}+\sum_{n \ge 1}\frac{3^nx^n}{n!} \\& = e^{3x}+e^x-2 \Rightarrow f(\ln{3}) = 28.\end{aligned}$

$\displaystyle \begin{aligned} 5. ~ S & = \sum_{n \ge 0}\frac{2^nx^{2^n-1}}{1+x^{2^n}} = \sum_{n \ge 0}\frac{(1+x^{2^n})'}{1+x^{2^n}} = \bigg[\sum_{n \ge 0}\ln\left(1+x^{2^n}\right)\bigg]' \\& = \bigg[\ln\bigg(\prod_{n \ge 0} (1+x^{2^n})\bigg)\bigg]' = \bigg[\ln\bigg(\frac{1}{1-x}\bigg)\bigg]' =\boxed{\dfrac{1}{1-x}}. \end{aligned}$
 
Last edited:
Sherlock said:
Don't post solutions yet. I'm working on them. (Nod)
Are you sure the last one is correct, though?

Yes, you are correct. :)
 
I wasn't aware that $\displaystyle \prod_{n=0}^{\infty} \left(1+x^{2^{n}} \right) = \sum_{n=0}^{\infty} x^{n} $. But from just writing out terms it appears to be true.
 
Random Variable said:
I wasn't aware that $\displaystyle \prod_{n=0}^{\infty} \left(1+x^{2^{n}} \right) = \sum_{n=0}^{\infty} x^{n} $. But from just writing out terms it appears to be true.

We have $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right)}{\left(1-x^{2^{n+1}}\right)}\prod_{1 \le k \le n+1}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right) }{\left(1-x^{2^{n+1}}\right)}\prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right). $

But $\displaystyle \left(1-x^{2^{k+1}}\right) = \left(1-x^{2^{k}}\right)\left(1+x^{2^{k}}\right)$, thus $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right) =\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right). $

Thus $\displaystyle \frac{\left(1-x\right)}{\left(1-x^{2^{n}}\right)}\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)}{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)} = 1 \implies \prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{1-x^{2^{n+1}}}{1-x}. $

The difference of two squares can do wonders! We get our case when $n \to \infty$ of course.
 
  • #10
sbhatnagar said:
4. \( \displaystyle \sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

Let \( \displaystyle S=\sum_{n=1}^{n}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

\( \displaystyle S=\sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} =\sum_{n=1}^{\infty}\frac{x^{2^{n-1}}+1-1}{(1-x^{2^{n-1}})(1+x^{2^{n-1}})} = \sum_{n=1}^{\infty} \frac{1}{(1-x^{2^{n-1}})}-\frac{1}{(1-x^{2^{n-1}})(1+x^{2^{n-1}})} = \sum_{n=1}^{\infty}\frac{1}{(1-x^{2^{n-1}})}-\frac{1}{(1-x^{2^{n}})}\)

\( \displaystyle S=\frac{1}{1-x}-\frac{1}{1-x^2}+\frac{1}{1-x^2}-\frac{1}{1-x^4}+\cdots= \boxed{\dfrac{1}{1-x}}\)

(Music)
 
  • #11
Sherlock said:
We have $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right)}{\left(1-x^{2^{n+1}}\right)}\prod_{1 \le k \le n+1}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right) }{\left(1-x^{2^{n+1}}\right)}\prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right). $

But $\displaystyle \left(1-x^{2^{k+1}}\right) = \left(1-x^{2^{k}}\right)\left(1+x^{2^{k}}\right)$, thus $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right) =\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right). $

Thus $\displaystyle \frac{\left(1-x\right)}{\left(1-x^{2^{n}}\right)}\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)}{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)} = 1 \implies \prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{1-x^{2^{n+1}}}{1-x}. $

The difference of two squares can do wonders! We get our case when $n \to \infty$ of course.

I think there's a simpler reason. When multiplying out, we find that $\displaystyle\prod_{0\leq k\leq n}(1+x^{2^k})$ is the sum of terms of the form $x^m$ (except for $1$), where $m$ is a sum of powers of two. Then we may notice that any $1\leq m\leq2^{n+1}-1$ is obtained exactly once because any number can be written uniquely in base-2 representation.

For example, take $n=3$: $(1+x^{2^0})(1+x^{2^1})(1+x^{2^2})(1+x^{2^3})=1+x^{2^0}+x^{2^1}+x^{2^0+2^1}+x^{2^2}+x^{2^0+2^2}+x^{2^1+2^2}+x^{2^0+2^2+2^2}=1+x+x^2+x^3+x^4+x^5+x^6+x^7$

Therefore, $\displaystyle\prod_{0\leq k\leq n}(1+x^{2^k})=1+\sum_{1\leq m\leq 2^{n+1}-1}x^m$

መለሰ
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K