Fun Puzzles: Test Your Math Skills!

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Fun Skills Test
Click For Summary

Discussion Overview

The thread presents a series of mathematical puzzles involving infinite series and summations. Participants explore various methods to evaluate these series, discussing their approaches and reasoning without reaching definitive conclusions.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 introduces several series to evaluate, prompting various responses.
  • Post 2 suggests a method of changing the order of summation for the first series due to the positivity of terms.
  • Post 3 provides a detailed evaluation of the second series, arriving at a result involving the exponential function.
  • Post 4 outlines a solution for the first series, leading to a boxed result of \(2\sqrt{e}\), but does not claim it as definitive.
  • Post 5 briefly summarizes a similar approach to the first series, also arriving at \(2\sqrt{e}\).
  • Post 6 encourages participants to solve the last two problems, expressing uncertainty about the correctness of a previous claim.
  • Post 8 and Post 9 express surprise at a product representation, suggesting it appears true based on term expansion.
  • Post 10 presents a method for evaluating the fourth series, leading to a boxed result of \(\frac{1}{1-x}\), while maintaining that this is part of an ongoing exploration.
  • Post 11 discusses the product representation further, suggesting a unique representation of numbers in base-2 as a justification for the series' behavior.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the evaluations of the series, with multiple approaches and results presented. Disagreements and uncertainties about the correctness of certain methods and results persist throughout the discussion.

Contextual Notes

Some participants express uncertainty regarding the validity of their results, and there are unresolved mathematical steps in the evaluations presented. The discussion remains open-ended with various interpretations and methods proposed.

sbhatnagar
Messages
87
Reaction score
0
Fun Problems! Evaluate the following:

1. \( \displaystyle \sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

2. \( \displaystyle \sum_{n=1}^{\infty}\frac{1+2+2^2+\cdots+2^{n-1}}{n!}\)

3. \( \displaystyle \sum_{n=1}^{\infty}\frac{(1+3^n)\ln^n(3)}{n!}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

5.\( \displaystyle \sum_{n=0}^{\infty}\dfrac{\displaystyle 2^n x^{x^{2^n}-1}}{\displaystyle 1+x^{2^n}} \)
 
Last edited:
Physics news on Phys.org
Write first series as $\displaystyle\sum\limits_{n=1}^{\infty }{\sum\limits_{j=1}^{n}{\frac{1}{{{2}^{n-1}}(j-1)!}}}=\sum\limits_{j=1}^{\infty }{\sum\limits_{n=j}^{\infty }{\frac{1}{{{2}^{n-1}}(j-1)!}}},$ we can reverse order of summation because of the positivity of the terms of the double series, so now things are straighforward.

You can do similar stuff on second series. Third series is easy by using the expansion of $e^x.$
 
Last edited:
sbhatnagar said:
2. \( \displaystyle \sum_{n=1}^{\infty}\frac{1+2+2^2+\cdots+2^{n-1}}{n!}\)
$\displaystyle \sum_{n \ge 1}~\sum_{0 \le k \le n-1}\frac{2^k}{n!} = \sum_{n \ge 1}\frac{2^n-1}{n!} = \sum_{n \ge 0}\frac{2^n}{n!}-\sum_{n \ge 0}\frac{1}{n!} = e(e-1).$
 
1. \( \displaystyle \sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

Solution to Problem 1:

Let \( \displaystyle S=\sum_{n=1}^{\infty}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\).

Let \( \displaystyle t_{n}=\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!} \right)}{2^{n-1}}\)

\( \displaystyle \begin{align*} t_{n+1} &= \frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!}+\dfrac{1}{(n)!} \right)}{2^{n}} \\ t_{n+1} &= \frac{1}{2}\frac{\left( 1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots +\dfrac{1}{(n-1)!}+\dfrac{1}{(n)!} \right)}{2^{n-1}} \\ t_{n+1} &= \frac{1}{2}t_n +\frac{1}{2^n n!} \\ \sum_{n=0}^{\infty}t_{n+1} &=\frac{1}{2}\sum_{n=0}^{\infty}t_n + \sum_{n=0}^{\infty} \frac{1}{2^n n!} \\ S & =\frac{S}{2}+\sqrt{e} \\ S &= \boxed{2\sqrt{e}}\end{align*}\)

Try solving the last two problems. They are very tricky. :)
 
My approach for first series is pretty short, the next step is $\displaystyle\sum\limits_{j = 1}^\infty {\frac{1}{{{2^{j - 1}}(j - 1)!}}\sum\limits_{n = 0}^\infty {\frac{1}{{{2^n}}}} } ,$ then combining the value of both series the result equals $2\sqrt e.$
 
sbhatnagar said:
Try solving the last two problems. They are very tricky. :)
Don't post solutions yet. I'm working on them. (Nod)
Are you sure the last one is correct, though?


---------- Post added at 01:45 AM ---------- Previous post was at 12:00 AM ----------

$\displaystyle \begin{aligned} 3. ~f(x) & = \sum_{n \ge 1}\frac{(1+3^n)x^n}{n!} = \sum_{n \ge 1}\frac{x^n}{n!}+\sum_{n \ge 1}\frac{3^nx^n}{n!} \\& = e^{3x}+e^x-2 \Rightarrow f(\ln{3}) = 28.\end{aligned}$

$\displaystyle \begin{aligned} 5. ~ S & = \sum_{n \ge 0}\frac{2^nx^{2^n-1}}{1+x^{2^n}} = \sum_{n \ge 0}\frac{(1+x^{2^n})'}{1+x^{2^n}} = \bigg[\sum_{n \ge 0}\ln\left(1+x^{2^n}\right)\bigg]' \\& = \bigg[\ln\bigg(\prod_{n \ge 0} (1+x^{2^n})\bigg)\bigg]' = \bigg[\ln\bigg(\frac{1}{1-x}\bigg)\bigg]' =\boxed{\dfrac{1}{1-x}}. \end{aligned}$
 
Last edited:
Sherlock said:
Don't post solutions yet. I'm working on them. (Nod)
Are you sure the last one is correct, though?

Yes, you are correct. :)
 
I wasn't aware that $\displaystyle \prod_{n=0}^{\infty} \left(1+x^{2^{n}} \right) = \sum_{n=0}^{\infty} x^{n} $. But from just writing out terms it appears to be true.
 
Random Variable said:
I wasn't aware that $\displaystyle \prod_{n=0}^{\infty} \left(1+x^{2^{n}} \right) = \sum_{n=0}^{\infty} x^{n} $. But from just writing out terms it appears to be true.

We have $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right)}{\left(1-x^{2^{n+1}}\right)}\prod_{1 \le k \le n+1}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right) }{\left(1-x^{2^{n+1}}\right)}\prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right). $

But $\displaystyle \left(1-x^{2^{k+1}}\right) = \left(1-x^{2^{k}}\right)\left(1+x^{2^{k}}\right)$, thus $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right) =\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right). $

Thus $\displaystyle \frac{\left(1-x\right)}{\left(1-x^{2^{n}}\right)}\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)}{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)} = 1 \implies \prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{1-x^{2^{n+1}}}{1-x}. $

The difference of two squares can do wonders! We get our case when $n \to \infty$ of course.
 
  • #10
sbhatnagar said:
4. \( \displaystyle \sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

Let \( \displaystyle S=\sum_{n=1}^{n}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} \)

\( \displaystyle S=\sum_{n=1}^{\infty}\dfrac{\displaystyle x^{2^{n-1}}}{\displaystyle 1-x^{2^n}} =\sum_{n=1}^{\infty}\frac{x^{2^{n-1}}+1-1}{(1-x^{2^{n-1}})(1+x^{2^{n-1}})} = \sum_{n=1}^{\infty} \frac{1}{(1-x^{2^{n-1}})}-\frac{1}{(1-x^{2^{n-1}})(1+x^{2^{n-1}})} = \sum_{n=1}^{\infty}\frac{1}{(1-x^{2^{n-1}})}-\frac{1}{(1-x^{2^{n}})}\)

\( \displaystyle S=\frac{1}{1-x}-\frac{1}{1-x^2}+\frac{1}{1-x^2}-\frac{1}{1-x^4}+\cdots= \boxed{\dfrac{1}{1-x}}\)

(Music)
 
  • #11
Sherlock said:
We have $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right)}{\left(1-x^{2^{n+1}}\right)}\prod_{1 \le k \le n+1}\left(1-x^{2^{k}}\right) = \frac{\left(1-x\right) }{\left(1-x^{2^{n+1}}\right)}\prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right). $

But $\displaystyle \left(1-x^{2^{k+1}}\right) = \left(1-x^{2^{k}}\right)\left(1+x^{2^{k}}\right)$, thus $\displaystyle \prod_{0 \le k \le n}\left(1-x^{2^{k+1}}\right) =\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right). $

Thus $\displaystyle \frac{\left(1-x\right)}{\left(1-x^{2^{n}}\right)}\prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)}{\prod_{0 \le k \le n}\left(1-x^{2^{k}}\right)} = 1 \implies \prod_{0 \le k \le n}\left(1+x^{2^{k}}\right) = \frac{1-x^{2^{n+1}}}{1-x}. $

The difference of two squares can do wonders! We get our case when $n \to \infty$ of course.

I think there's a simpler reason. When multiplying out, we find that $\displaystyle\prod_{0\leq k\leq n}(1+x^{2^k})$ is the sum of terms of the form $x^m$ (except for $1$), where $m$ is a sum of powers of two. Then we may notice that any $1\leq m\leq2^{n+1}-1$ is obtained exactly once because any number can be written uniquely in base-2 representation.

For example, take $n=3$: $(1+x^{2^0})(1+x^{2^1})(1+x^{2^2})(1+x^{2^3})=1+x^{2^0}+x^{2^1}+x^{2^0+2^1}+x^{2^2}+x^{2^0+2^2}+x^{2^1+2^2}+x^{2^0+2^2+2^2}=1+x+x^2+x^3+x^4+x^5+x^6+x^7$

Therefore, $\displaystyle\prod_{0\leq k\leq n}(1+x^{2^k})=1+\sum_{1\leq m\leq 2^{n+1}-1}x^m$

መለሰ
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K