jacks said:
If $f$ is a Real valued function on the set of real no. such that for any real $a$ and $b$ and $f(af(b)) = ab$. Then $f(2012) = $
Hi jacks,
\(\mbox{By substituting, }a=1\mbox{ we get, }f[f(b)]=b\mbox{ for each }b\in\Re\,.\mbox{ Therefore the inverse of }f\mbox{ is itself.}\)
\(\mbox{Suppose there exist a real number }n\mbox{ such that, }f(n)=1\,.\mbox{ Then, }\)
\[f\left[mf\left(\frac{1}{m}\right)\right]=1=f(n)\mbox{ where }m\in\Re\mbox{ and }m\neq 0\]
\[\Rightarrow mf\left(\frac{1}{m}\right)=n\]
\[\Rightarrow f\left(\frac{1}{m}\right)=\frac{n}{m}~~~~~~~(1)\]
\[\Rightarrow f\left(\frac{1}{m}\right)=f\left[nf\left(\frac{1}{m}\right)\right]\]
\[\Rightarrow \frac{1}{m}=nf\left(\frac{1}{m}\right)\]
\[\Rightarrow f\left(\frac{1}{m}\right)=\frac{1}{mn}~~~~~~~~(2)\]
By (1) and (2);
\[n=\pm 1\]
Therefore \(n\) can be \(1\mbox{ or }-1\) depending on the function \(f\). Hence,
If the function \(f\) is defined such that, \(f(1)=1,\)
\[f(2012)=f(2012f(1))=2012\]
If the function \(f\) is defined such that, \(f(-1)=1,\)
\[f(2012)=f(2012f(-1))=-2012\]