MHB G contains a normal p-Sylow subgroup

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Normal Subgroup
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $G$ be a non-abelian finite group with center $Z>1$.
I want to show that if $G/Z$ is a $p$-group, for some prime $p$, then $G$ contains a normal $p$-Sylow subgroup and $p\mid |Z|$.

We have that $$|G/Z|=p^n, n\geq 1\Rightarrow \frac{|G|}{|Z|}=p^n\Rightarrow |G|=p^n|Z|$$ That means that there are $p$-Sylow in $G$, right? (Wondering)

Now we have to show that there is only one $p$-Sylow, or not? (Wondering)

How could we do that? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Let $P$ be a Sylow p subgroup of $G$. Then $PZ/Z$ is the Sylow p subgroup of $G/Z$; i.e. $G=PZ$. Then easily $P$ is normal in $G$. Then also $Z(P)\subseteq Z(G)$ and so p divides the order of the center of G.
 
johng said:
Let $P$ be a Sylow p subgroup of $G$. Then $PZ/Z$ is the Sylow p subgroup of $G/Z$; i.e. $G=PZ$.

Why is $PZ/Z$ the Sylow p subgroup of $G/Z$ and not $P/Z$ ? And why does it hold that $G=PZ$ ? (Wondering)
 
For $G$ any finite group and $p$ any prime,

1. If $G$ is a $p$ group, then $G$ is the Sylow $p$ subroup.

2. If $N$ is any normal subgroup of $G$ and $P$ is a Sylow $p$ subgroup of $G$, then $PN/N$ is a Sylow $p$ subgroup of $G/N$.

So in your problem, $G/Z$ is the Sylow $p$ subgroup of $G/Z$ and $PZ/Z$ is a Sylow $p$ subgroup. So $G/Z=PZ/Z$ and thus $G=PZ$.
 
johng said:
1. If $G$ is a $p$ group, then $G$ is the Sylow $p$ subroup.

Do you mean that in that case there is just one Sylow subgroup? (Wondering)
johng said:
2. If $N$ is any normal subgroup of $G$ and $P$ is a Sylow $p$ subgroup of $G$, then $PN/N$ is a Sylow $p$ subgroup of $G/N$.

Why does it hold that then $PN/N$ is a Sylow $p$ subgroup of $G/N$ ? (Wondering)
 
johng said:
Let $P$ be a Sylow p subgroup of $G$. Then $PZ/Z$ is the Sylow p subgroup of $G/Z$; i.e. $G=PZ$. Then easily $P$ is normal in $G$. Then also $Z(P)\subseteq Z(G)$ and so p divides the order of the center of G.

Isn't it as follows? (Wondering)

Since $G/Z$ is a $p$-group, it contains $p$-Sylow subgroups, say $P$.
From the correspondence theorem we have that there is a bijective mapping between the subgroups of $G$ that contain $Z$ and the subgroups of $G/Z$,
$$\phi (A)\mapsto A/Z, \ A\in G$$
So, the corresponding $p$-Sylow of $G$ exists and it is the $PZ$, right? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top