I Galaxies as systems extended from the solar system

AI Thread Summary
Galaxies do not adhere to Kepler's laws, which are applicable only to two-body systems, and are instead modeled using Newton's laws. The discussion highlights that galactic behavior is fundamentally Newtonian, though it may require adjustments for dark matter and general relativistic effects. The small sample size of the Solar System raises questions about the validity of extrapolating its dynamics to galaxies. Modified Newtonian Dynamics (MOND) is mentioned as one potential framework, but it is noted that there are multiple modified theories available. The conversation emphasizes the need for further understanding of dark matter and alternative gravitational models.
Martyn Arthur
Messages
114
Reaction score
20
TL;DR Summary
The application of Kepler's third law to galaxies
Is it a big assumption that Galaxies should follow Kepler's third law with rotation speeds decreasing with distance from the centre. Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
Thanks
Martyn
 
Astronomy news on Phys.org
Martyn Arthur said:
Is it a big assumption that Galaxies should follow Kepler's third law
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).
Martyn Arthur said:
Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
 
  • Like
Likes diogenesNY and russ_watters
Thank you!
Martyn
 
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.
Technically they apply to problems of central motion in a Kepler potential (proportional to 1/r). The second law applies more generally to any central potential as it is related to conservation of angular momentum. However, the first and third laws are contingent on the problem actually being a Kepler central potential.

The gravitational two-body problem of course reduces to a Kepler central potential problem once the center of mass motion is factored out.
 
Last edited:
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).

With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
There is more than one modified theory. MOND is not the only game in town and is at best a "toy-model".
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...

Similar threads

Back
Top