Undergrad Galaxies as systems extended from the solar system

Click For Summary
Galaxies do not adhere to Kepler's laws, which are applicable only to two-body systems, and are instead modeled using Newton's laws. The discussion highlights that galactic behavior is fundamentally Newtonian, though it may require adjustments for dark matter and general relativistic effects. The small sample size of the Solar System raises questions about the validity of extrapolating its dynamics to galaxies. Modified Newtonian Dynamics (MOND) is mentioned as one potential framework, but it is noted that there are multiple modified theories available. The conversation emphasizes the need for further understanding of dark matter and alternative gravitational models.
Martyn Arthur
Messages
128
Reaction score
25
TL;DR
The application of Kepler's third law to galaxies
Is it a big assumption that Galaxies should follow Kepler's third law with rotation speeds decreasing with distance from the centre. Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
Thanks
Martyn
 
Astronomy news on Phys.org
Martyn Arthur said:
Is it a big assumption that Galaxies should follow Kepler's third law
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).
Martyn Arthur said:
Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
 
  • Like
Likes diogenesNY and russ_watters
Thank you!
Martyn
 
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.
Technically they apply to problems of central motion in a Kepler potential (proportional to 1/r). The second law applies more generally to any central potential as it is related to conservation of angular momentum. However, the first and third laws are contingent on the problem actually being a Kepler central potential.

The gravitational two-body problem of course reduces to a Kepler central potential problem once the center of mass motion is factored out.
 
Last edited:
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).

With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
There is more than one modified theory. MOND is not the only game in town and is at best a "toy-model".
 
I recently purchased a lunar clock intended as a Christmas present for a young family friend who has become interested in astronomy. The clock face shows twelve images of the Moon in all its main phases, with the Full Moon depicted at the "twelve o'clock" position. Now I purchased this clock especially early to allow time to check on its accuracy. After waiting for a full lunar orbit to occur, I have since discovered that the clock time when measured relative to its lunar images (that's to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
9K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 72 ·
3
Replies
72
Views
10K