MHB Galois Groups .... A&F Example 47.7 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Groups
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 47: Galois Groups... ...

I need some help with an aspect of the Example 47.7 ...

Example 47.7 and its proof read as follows:
View attachment 6869
View attachment 6870In the above example, Anderson and Feil write the following:

"... ... We note that $$[ \mathbb{Q} ( \sqrt[3]{2} ) : \mathbb{Q} ] = 3$$ and $$[ \mathbb{Q} ( \zeta ) : \mathbb{Q} ] = 2$$. ... ... "
Can someone please explain to me how/why $$[ \mathbb{Q} ( \zeta ) : \mathbb{Q} ] = 2$$ ... ... ?

Anderson and Feil give the definition of $$\zeta$$ in Chapter 9 in Exercise 25 ... as follows ... :
https://www.physicsforums.com/attachments/6871
Hope someone can help ...

Peter
 
Physics news on Phys.org
Since $\zeta^3 = 1$, $\zeta$ is a root of $x^3 - 1$. Note $x^3 - 1 = (x - 1)(x^2+x+1)$. So as $\zeta \neq 1$, $\zeta$ is a root of $x^2+x+1$, which is irreducible over $\Bbb Q$. Hence, $|\Bbb Q(\zeta): \Bbb Q| = 2$.
 
Euge said:
Since $\zeta^3 = 1$, $\zeta$ is a root of $x^3 - 1$. Note $x^3 - 1 = (x - 1)(x^2+x+1)$. So as $\zeta \neq 1$, $\zeta$ is a root of $x^2+x+1$, which is irreducible over $\Bbb Q$. Hence, $|\Bbb Q(\zeta): \Bbb Q| = 2$.
Thanks Euge ... appreciate your help ...

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top