MHB Game : random variable for net profit

Click For Summary
The game involves tossing a fair coin up to three times, with players paying 1 euro per toss and winning 3 euros if heads appears. The random variable X represents the net profit, which can take values of -3, 0, 1, or 2 euros. The probabilities for these outcomes are P(X=2) = 1/2, P(X=1) = 1/4, P(X=0) = 1/8, and P(X=-3) = 1/8. Calculating further, P(X<0) equals 1/8, while P(X>0) totals 3/4, confirming the calculations and intermediate steps are accurate. The discussion concludes with agreement on the correctness of the calculations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

You participate in the following game :
You toss a fair coin until heads falls, but no more than three times. You have to pay $1$ euro for each throw. If your head falls, you win $3$ euros. The random variable $X$ describes your net profit (profit
minus stake). Give the values that $X$ can get and the corresponding probabilities. Calculate $P [X <0]$ and $P [X> 0]$. Make a note of the intermediate steps.

I have done the following :
- If we get Head at the first toss, then X = -1 + 3 = 2 EUR.
- If we get Head at the second toss, then X = -1 -1 + 3 = 1 EUR.
- If we get Head at the third toss, then X = -1 -1 -1 + 3 = 0 EUR.
- If we don't get Head at all at the three first tosses, then X = -1 -1 - 1 = -3 EUR.

So are the possible values for $X$ the $\{-3, 0, 1, 2\}$ ? :unsure:

As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Is everything correct and complete? :unsure:
 
Physics news on Phys.org
Hey mathmari!

All correct. (Nod)

I would rephrase the explanations though.
For instance:
- $P(X=2) = \frac{1}{2}$ (head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (no head at the first toss, and head at the second toss)
(Thinking)
 
mathmari said:
As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Ah at the last one Imeant $P(X=-3)$ instead of $P(X=0)$, so we have $P(X=-3) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ ( no head at the first toss, and no head at the second toss, and no head at the third toss ), right? :unsure:

To calculate the probabilities $P(X<0)$ and $P(X>0)$ do we do the following ?
\begin{align*}&\{X<0\}=\cup_{{y\in X(\Omega), y<0}}\{X=y\}=\{X=-3\} \\ & \Rightarrow P[X<0]=P[X=-3]=\frac{1}{8} \\ &\{X>0\}=\cup_{{y\in X(\Omega), y>0}}\{X=y\}=\{X=1\} \cup \{X=2\} \\ & \Rightarrow P[X>0]=P[\{X=1\} \cup \{X=2\}]=P[X=1]+P[X=2]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\end{align*}
Is that correct? Do we have to mention more intermediate steps or are these the desired ones? :unsure:
 
Last edited by a moderator:
Looks correct to me, and I think you have all the desired steps. (Nod)
 
Klaas van Aarsen said:
Looks correct to me, and I think you have all the desired steps. (Nod)

I added some more steps. Is that correct now? :unsure:
 
mathmari said:
I added some more steps. Is that correct now?
It looks fine to me. (Nod)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 57 ·
2
Replies
57
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K