Game : random variable for net profit

Click For Summary
SUMMARY

The discussion revolves around a game involving a fair coin toss where players pay €1 for each toss and win €3 if they get heads. The random variable $X$ represents the net profit, which can take values of -3, 0, 1, and 2 euros. The probabilities calculated are $P(X=2) = \frac{1}{2}$, $P(X=1) = \frac{1}{4}$, $P(X=0) = \frac{1}{8}$, and $P(X=-3) = \frac{1}{8}$. Additionally, the probabilities for $P[X<0]$ and $P[X>0]$ are determined as $\frac{1}{8}$ and $\frac{3}{4}$, respectively.

PREREQUISITES
  • Understanding of random variables and their properties
  • Basic knowledge of probability theory
  • Familiarity with coin toss experiments and expected outcomes
  • Ability to calculate probabilities using combinatorial methods
NEXT STEPS
  • Study the concept of expected value in probability theory
  • Learn about binomial distributions and their applications
  • Explore advanced probability techniques such as Markov chains
  • Investigate the law of large numbers and its implications in gambling scenarios
USEFUL FOR

Mathematicians, statisticians, game theorists, and anyone interested in understanding probability and its applications in games of chance.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

You participate in the following game :
You toss a fair coin until heads falls, but no more than three times. You have to pay $1$ euro for each throw. If your head falls, you win $3$ euros. The random variable $X$ describes your net profit (profit
minus stake). Give the values that $X$ can get and the corresponding probabilities. Calculate $P [X <0]$ and $P [X> 0]$. Make a note of the intermediate steps.

I have done the following :
- If we get Head at the first toss, then X = -1 + 3 = 2 EUR.
- If we get Head at the second toss, then X = -1 -1 + 3 = 1 EUR.
- If we get Head at the third toss, then X = -1 -1 -1 + 3 = 0 EUR.
- If we don't get Head at all at the three first tosses, then X = -1 -1 - 1 = -3 EUR.

So are the possible values for $X$ the $\{-3, 0, 1, 2\}$ ? :unsure:

As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Is everything correct and complete? :unsure:
 
Physics news on Phys.org
Hey mathmari!

All correct. (Nod)

I would rephrase the explanations though.
For instance:
- $P(X=2) = \frac{1}{2}$ (head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (no head at the first toss, and head at the second toss)
(Thinking)
 
mathmari said:
As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Ah at the last one Imeant $P(X=-3)$ instead of $P(X=0)$, so we have $P(X=-3) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ ( no head at the first toss, and no head at the second toss, and no head at the third toss ), right? :unsure:

To calculate the probabilities $P(X<0)$ and $P(X>0)$ do we do the following ?
\begin{align*}&\{X<0\}=\cup_{{y\in X(\Omega), y<0}}\{X=y\}=\{X=-3\} \\ & \Rightarrow P[X<0]=P[X=-3]=\frac{1}{8} \\ &\{X>0\}=\cup_{{y\in X(\Omega), y>0}}\{X=y\}=\{X=1\} \cup \{X=2\} \\ & \Rightarrow P[X>0]=P[\{X=1\} \cup \{X=2\}]=P[X=1]+P[X=2]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\end{align*}
Is that correct? Do we have to mention more intermediate steps or are these the desired ones? :unsure:
 
Last edited by a moderator:
Looks correct to me, and I think you have all the desired steps. (Nod)
 
Klaas van Aarsen said:
Looks correct to me, and I think you have all the desired steps. (Nod)

I added some more steps. Is that correct now? :unsure:
 
mathmari said:
I added some more steps. Is that correct now?
It looks fine to me. (Nod)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
550
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 57 ·
2
Replies
57
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K