MHB Game : random variable for net profit

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

You participate in the following game :
You toss a fair coin until heads falls, but no more than three times. You have to pay $1$ euro for each throw. If your head falls, you win $3$ euros. The random variable $X$ describes your net profit (profit
minus stake). Give the values that $X$ can get and the corresponding probabilities. Calculate $P [X <0]$ and $P [X> 0]$. Make a note of the intermediate steps.

I have done the following :
- If we get Head at the first toss, then X = -1 + 3 = 2 EUR.
- If we get Head at the second toss, then X = -1 -1 + 3 = 1 EUR.
- If we get Head at the third toss, then X = -1 -1 -1 + 3 = 0 EUR.
- If we don't get Head at all at the three first tosses, then X = -1 -1 - 1 = -3 EUR.

So are the possible values for $X$ the $\{-3, 0, 1, 2\}$ ? :unsure:

As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Is everything correct and complete? :unsure:
 
Physics news on Phys.org
Hey mathmari!

All correct. (Nod)

I would rephrase the explanations though.
For instance:
- $P(X=2) = \frac{1}{2}$ (head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (no head at the first toss, and head at the second toss)
(Thinking)
 
mathmari said:
As for the probabilities do we have the following ?
- $P(X=2) = \frac{1}{2}$ (either head or no head at the first toss)
- $P(X=1) = \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}$ (either head or no head at the first toss, either head or no head at the second toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)
- $P(X=0) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ (either head or no head at the first toss, either head or no head at the second toss, either head or no head at the third toss)

Ah at the last one Imeant $P(X=-3)$ instead of $P(X=0)$, so we have $P(X=-3) = \frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}=\frac{1}{8}$ ( no head at the first toss, and no head at the second toss, and no head at the third toss ), right? :unsure:

To calculate the probabilities $P(X<0)$ and $P(X>0)$ do we do the following ?
\begin{align*}&\{X<0\}=\cup_{{y\in X(\Omega), y<0}}\{X=y\}=\{X=-3\} \\ & \Rightarrow P[X<0]=P[X=-3]=\frac{1}{8} \\ &\{X>0\}=\cup_{{y\in X(\Omega), y>0}}\{X=y\}=\{X=1\} \cup \{X=2\} \\ & \Rightarrow P[X>0]=P[\{X=1\} \cup \{X=2\}]=P[X=1]+P[X=2]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\end{align*}
Is that correct? Do we have to mention more intermediate steps or are these the desired ones? :unsure:
 
Last edited by a moderator:
Looks correct to me, and I think you have all the desired steps. (Nod)
 
Klaas van Aarsen said:
Looks correct to me, and I think you have all the desired steps. (Nod)

I added some more steps. Is that correct now? :unsure:
 
mathmari said:
I added some more steps. Is that correct now?
It looks fine to me. (Nod)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Replies
4
Views
2K
Replies
57
Views
6K
Replies
4
Views
1K
Replies
7
Views
2K
Replies
45
Views
5K
Replies
5
Views
1K
Back
Top