Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A Gamma function convergence of an integral

  1. Oct 11, 2017 #1
    ##\Gamma(x)=\int^{\infty}_0 t^{x-1}e^{-t}dt## converge for ##x>0##. But it also converge for negative noninteger values. However many authors do not discuss that. Could you explain how do examine convergence for negative values of ##x##.
     
  2. jcsd
  3. Oct 11, 2017 #2
    I'm pretty sure it doesn't converge for negative noninteger values and that the formula is not applicable there. Use the recursive formula for the Gamma function instead to get those values.
     
  4. Oct 11, 2017 #3

    mathman

    User Avatar
    Science Advisor
    Gold Member

    There is a general concept called analytic continuation, where a function has a particular representation in some domain can be extended outside this domain.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Gamma function convergence of an integral
Loading...