I Gauge in the Aharonov Bohm effect

Click For Summary
The discussion centers on the choice of vector potential in the context of the Aharonov-Bohm effect, specifically questioning whether a scaled vector potential could yield different energy levels. It is established that while the proposed transformation appears valid outside the solenoid, it fails to qualify as a true gauge transformation inside due to the non-vanishing magnetic field. Consequently, the energy levels derived from this transformation are not gauge-invariant, contradicting the principles of quantum mechanics. The conversation emphasizes that physically observable quantities, such as the relative phase in the Aharonov-Bohm effect, remain gauge invariant and depend solely on the magnetic flux. The importance of adhering to boundary conditions in gauge transformations is also highlighted.
KDPhysics
Messages
73
Reaction score
24
TL;DR
Why doesn't gauge transforming the vector potential for a solenoid affect the energy levels of a particle orbiting it a fixed radius?
In p.385 of Griffiths QM the vector potential ##\textbf{A} = \frac{\Phi}{2\pi r}\hat{\phi}## is chosen for the region outside a long solenoid. However, couldn't we also have chosen a vector potential that is a multiple of this, namely ##\textbf{A} = \alpha \frac{\Phi}{2\pi r} \hat{\phi}## where ##\alpha## is some constant? The two are related by a gauge transformation:
$$\alpha\frac{\Phi}{2\pi r}\hat{\phi} = \frac{\Phi}{2\pi r} \hat{\phi}+\nabla\bigg((\alpha-1)\frac{\Phi}{2\pi}\phi\bigg)$$
When I solve the TISE with this new gauge I get that the energy levels are:
$$E_n = \frac{\hbar^2}{2mb^2}\bigg(n-\alpha \frac{\Phi}{\Phi_0}\bigg)^2$$
which is different from what Griffiths even if the magnetic flux is quantized. How is it possible that the ground state depends on the gauge choice?
 
  • Like
Likes Demystifier
Physics news on Phys.org
To study a gauge transformation one must consider the vector potential everywhere, i.e. not only outside of the solenoid, but also inside of it. Since the magnetic field does not vanish in the interior, it can be shown that a multiplication by ##\alpha## is not really a gauge transformation in the interior. Hence your transformation is not really a gauge transformation. But nice try!
 
Physically observable quantities are always gauge invariant. Whatever you calculate are not the energy eigenvalues of a gauge-invariant Hamiltonian. In the AB effect what's observable is a relative phase, but this phase is not gauge dependent but is given by the magnetic flux inside the solenoid, which is a gauge-invariant quantity. The gauge transformation must also fulfill the boundary conditions at the boundary of the solenoid.

A very concise treatment of gauge invariance in quantum mechanics can be found in the textbook by Cohen-Tannoudji et al.

Very illuminating is also

K.-H. Yang, Gauge-invariant interpretations of quantum mechanics, Ann. Phys. (NY) 101, 62 (1976)
https://doi.org/10.1016/0003-4916(76)90275-X

K.-H. Yang, Physical interpretation of classical gauge transformations, Ann. Phys. (NY) 101, 97 (1976)
https://doi.org/10.1016/0003-4916(76)90276-1
 
  • Like
Likes dextercioby, PeterDonis and KDPhysics
Thanks for the answers, very enlightening!
 
  • Like
Likes Demystifier and vanhees71
Note also that energy spectrum is gauge invariant. See e.g. Ballentine's book, Eq. (11.23).
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
486
  • · Replies 7 ·
Replies
7
Views
2K
Replies
24
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
333