Gauss' law for a cavity in an insulator

Click For Summary
The discussion revolves around applying Gauss' law to a cavity within a uniformly charged solid sphere. It highlights that while superimposing positive and negative charge densities suggests no charge is enclosed in the cavity, this does not imply the absence of an electric field. The argument emphasizes that a lack of net flux does not equate to no electric field, as field lines can still exist. Additionally, the importance of symmetry in analyzing electric fields is noted, alongside a suggestion to include relevant figures in future posts for clarity. Understanding these nuances is crucial for correctly interpreting the behavior of electric fields in such configurations.
laser
Messages
104
Reaction score
17
Homework Statement
A solid sphere of radius R has uniform charge density ρ. A hole of radius R/2 is scooped out of it as shown in Figure 10. Show that the field inside the hole is uniform and along the x-axis and of magnitude ρR/6ε0. Hint: Think of the hole as a superposition of positive and negative charges.
Relevant Equations
E=kq/r^2
This is a problem from Yale OCW (Shankar). The solution he gives is as follows:

Screenshot_3.png


Sure, this makes sense. However...

Superimposed rho and negative rho with radius R/2 means there is no charge enclosed in the cavity... therefore
no charge -> no flux -> no electric field.
 
Physics news on Phys.org
laser said:
Homework Statement: A solid sphere of radius R has uniform charge density ρ. A hole of radius R/2 is scooped out of it as shown in Figure 10. Show that the field inside the hole is uniform and along the x-axis and of magnitude ρR/6ε0. Hint: Think of the hole as a superposition of positive and negative charges.
Relevant Equations: E=kq/r^2

This is a problem from Yale OCW (Shankar). The solution he gives is as follows:

View attachment 340207

Sure, this makes sense. However...

Superimposed rho and negative rho with radius R/2 means there is no charge enclosed in the cavity... therefore
no charge -> no flux -> no electric field.
No. You cannot draw the conclusion that there is no electric field. You would need to be able to make some symmetry argument for that to hold.

No net flux only means any field lines that come in also go out somewhere else.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
23
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
21
Views
4K
Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K