MHB General orthogonal scale factor identity

ognik
Messages
626
Reaction score
2
Please be patient as I struggle with latex here ...
Part 1 of the problem says to start with:
$ \frac{\partial\bar{r}}{\partial{q}_{1}} ={h}_{1} \hat{q}_{1} $ and then to find an expression for $ {h}_{1} $ that agrees with $ {g}_{ij}=\sum_{l} \frac{\partial{x}_{l}}{\partial{q}_{i}}\frac{\partial{x}_{l}}{\partial{q}_{j}} $

My attempt is:
$ \hat{q}_{1} = \frac{1}{h}_{1} \frac{\partial\bar{r}}{\partial{q}_{1}}$
but $ \hat{q}_{1}.\hat{q}_{1}=1$
Then $ \left({h}_{1}\right)^{\!{2}} =\left(\frac{\partial\bar{r}}{\partial{q}_{1}}\right)^{\!{2}}$
Now $ \left(\frac{\partial\bar{r}}{\partial{q}_{1}}\right)= \left(\frac{\partial{x}}{\partial{q}_{1}}\right)+\left(\frac{\partial{y}}{\partial{q}_{1}}\right)+\left(\frac{\partial{z}}{\partial{q}_{1}}\right) $
so $ \left(\frac{\partial\bar{r}}{\partial{q}_{1}}\right)^{\!{2}}= \left(\frac{\partial{x}}{\partial{q}_{1}}\right)^{\!{2}}+\left(\frac{\partial{y}}{\partial{q}_{1}}\right)^{\!{2}}+\left(\frac{\partial{z}}{\partial{q}_{1}}\right)^{\!{2}} $
Now $ {g}_{ii} $ is defined = $ {h}_{i}^{\!{2}}$ and comparing with $ {g}_{ij}=\sum_{l} \frac{\partial{x}_{l}}{\partial{q}_{i}}\frac{\partial{x}_{l}}{\partial{q}_{j}} $ above...
Therefore $ {h}_{1}= \sqrt{ \left(\frac{\partial{x}}{\partial{q}_{1}}\right)^{\!{2}}+\left(\frac{\partial{y}}{\partial{q}_{1}}\right)^{\!{2}}+\left(\frac{\partial{z}}{\partial{q}_{1}}\right)^{\!{2}}} $ QED - but have I done anything illegal here?
-----
Part 2 is a derivation:
Again starting with $ \hat{q}_{1} = \frac{1}{h}_{1} \frac{\partial\bar{r}}{\partial{q}_{1}}$
Then $ \frac{\partial\hat{q}_{1}}{\partial{q}_{2}}=\frac{1}{{h}_{1}}\frac{\partial{}^{2}\bar{r}}{\partial{q}_{1}\partial{q}_{2}} = \frac{1}{{h}_{1}}\frac{\partial}{\partial{q}_{1}}\left(\frac{\partial\bar{r}}{\partial{q}_{2}}\right)^{\!{}} $ (${h}_{1}$ constant w.r.t. 2)
but $ \frac{\partial\bar{r}}{\partial{q}_{2}}={h}_{2} \hat{q}_{2} $
so $ \frac{\partial\hat{q}_{1}}{\partial{q}_{2}}=\frac{1}{{h}_{1}} \frac{\partial\left({h}_{2}\hat{q}_{2}\right)}{\partial{q}_{1}}= \hat{q}_{2}\frac{1}{{h}_{1}}\frac{\partial{h}_{2}}{\partial{q}_{1}}$
Which is QED - but again I have this uncertain feeling so would appreciate confirmation there I have done nothing untoward
-----------------
Part 3 has me so far, I would appreciate a hint ...
Derive $ \frac{\partial\hat{q}_{1}}{\partial{q}_{1}}= -\sum_{j\ne{1}}^{} \hat{q}_{2}\frac{1}{{h}_{2}}\frac{\partial{h}_{1}}{\partial{q}_{2}}$
I have tried a few things without success ... probably there is a trick I haven't encountered before?
 
Physics news on Phys.org
In addition: I have assumed perhaps incautiously, that people would recognize the subject here - it is around generalised curvilinear coordinates, with the expression for $ {g}_{ij}$ representing the mixed coordinates, but ${h}_{i}$ excludes the mixed coordinates, IE it is for an orthogonal basis. I feel fairly confident of my working for the first 2 parts, but would like confirmation that I haven't done anything that isn't justifiable. For the 3rd part, I have spent ages trying different things - I thought I was onto it when I differentiated the starting eqn w.r.t. BOTH i and j, but still could not get a term in $ \frac{\partial{\bar{q}}_{i}}{\partial{q}_{i}} $. So I'd also really appreciate a tip as to what approach might product that term, thanks.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top