B Solving for the Nth divergence in any coordinate system

  • #31
Ok, let's try ##n=5## $$\nabla^{n} F = F_{r^{ n } } + \frac {1} {r} F_{r^{ n-1 }} + \frac {1} {r^{2}} F_{\theta^{ n } } = F_{r^{ 5 } } + \frac {1} {r} F_{r^{ 5-1 }} + \frac {1} {r^{2}} F_{\theta^{ 5 } } = F_{r^{ 5 } } + \frac {1} {r} F_{r^{ 4 }} + \frac {1} {r^{2}} F_{\theta^{ 5 } } $$
 
Physics news on Phys.org
  • #32
I want to try and calculate if this formula is correct $$g^{ d_{1} d_{2} } \left[\prod\limits_{w = 3}^{n} g^{ c_{w} d_{w} } \right] f_{;d_{n}...d_{1}}$$ but I'm unsure of how to quickly calculate iterated covariant derivatives, like we have with ##f_{;d_{n}...d_{1}}##
 
  • #33
Your ##f_{;d_{n}...d_{1}}## are all n-th derivative. As you calculated in #29
1680753561384.png

##\Delta## or ##\nabla^2## contains RHS 2nd term, first derivative. How do you concilitate it ?
 
  • #34
I'm sorry, I don't know what you mean by "concilitate"
 
  • #35
My bad typo, conciliate. ##\Delta## has first derivative of r. I wonder your #32 goes with it.
 
  • #36
Ok, so I was rereading through your posts 19, 21, 23, and 25, and I think I understand them better now. I also think I MIGHT have found what I was looking for $$\nabla^{n} f = \sum_{i=1}^{m} \left [ \partial_{x_{i}}^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m} \left [ \left [ \partial_{x_{i}} \right ]^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m} \left [ \left [ \frac {\partial } {\partial {x_{i}}} \right ] ^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \left [ f \right ] \right )$$ and the ##\nabla^{n}## operator itself $$\nabla^{n}= \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \right )$$ where ##x## represents the Cartesian Basis, and ##q## represents the arbitrary Basis. There are ##m_x## dimensions in the Cartesian Basis and ##m_q## dimensions in the arbitrary Basis.
I think this holds, since, in Einstein Notation, we have the multivariable chain rule as $$\frac{\partial}{\partial x^i}=\frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j}$$
 
  • Like
Likes anuttarasammyak
  • #37
Is the like meant to indicate that that is correct? :D
 
  • #38
I observe my #25 and your #36 coincide.
 
  • Love
Likes Vanilla Gorilla
  • #39
Also, would it be necessary for ##m_x=m_q## for that equation $$\nabla^{n}= \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \right )$$ to work?
 
  • #40
We need same number of parameters to describe same space.
 
  • Like
Likes Vanilla Gorilla
  • #41
What do I do with mixed terms (I.e., more than 1 basis vector involved), such as $$-2\cos \phi\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}$$ in my calculation? Do I just discard those?
 
  • #42
Vanilla Gorilla said:
What do I do with mixed terms (I.e., more than 1 basis vector involved), such as −2cos⁡ϕ∂∂rsin⁡ϕr∂∂ϕ in my calculation? Do I just discard those?

-2\cos \phi\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}
We have no problem on the leftest
-2\cos \phi. Applying produclt rule of differentiaion,
\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}
=[\frac{\partial}{\partial r}\frac{\sin \phi}{r}]\frac{\partial}{\partial \phi}+\frac{\sin \phi}{r}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi}
=-\frac{\sin \phi}{r^2}\frac{\partial}{\partial \phi}+\frac{\sin \phi}{r}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi}

As for change of order of operators for an example
\frac{d}{dx}xA=A+x\frac{d}{dx}A
As operator we may delete A as
\frac{d}{dx}x=1+x\frac{d}{dx}
1=\frac{d}{dx}x-x\frac{d}{dx}=[\frac{d}{dx},x]
In general
[\frac{d}{dx},f(x)]=f'(x)
 
Last edited:
  • Like
Likes Vanilla Gorilla

Similar threads

  • · Replies 10 ·
Replies
10
Views
369
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 2 ·
Replies
2
Views
797
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K