High School Solving for the Nth divergence in any coordinate system

Click For Summary
The discussion revolves around generalizing the operator ∇^n for Nth partial derivatives in any coordinate system, moving beyond Cartesian coordinates. The proposed formula for ∇^n is expressed as a sum of unmixed partial derivatives, and participants explore how to adapt this to any coordinate system using the metric tensor and the determinant of the metric. There is a focus on constructing a recursive relationship for ∇^n based on the Laplacian operator, with suggestions for using the exterior derivative and Hodge star operator to facilitate generalization. The conversation highlights the complexity of deriving explicit formulas and the need for clarity in notation and definitions. Ultimately, the goal is to establish a coherent framework for applying these operators in various mathematical contexts.
  • #31
Ok, let's try ##n=5## $$\nabla^{n} F = F_{r^{ n } } + \frac {1} {r} F_{r^{ n-1 }} + \frac {1} {r^{2}} F_{\theta^{ n } } = F_{r^{ 5 } } + \frac {1} {r} F_{r^{ 5-1 }} + \frac {1} {r^{2}} F_{\theta^{ 5 } } = F_{r^{ 5 } } + \frac {1} {r} F_{r^{ 4 }} + \frac {1} {r^{2}} F_{\theta^{ 5 } } $$
 
Physics news on Phys.org
  • #32
I want to try and calculate if this formula is correct $$g^{ d_{1} d_{2} } \left[\prod\limits_{w = 3}^{n} g^{ c_{w} d_{w} } \right] f_{;d_{n}...d_{1}}$$ but I'm unsure of how to quickly calculate iterated covariant derivatives, like we have with ##f_{;d_{n}...d_{1}}##
 
  • #33
Your ##f_{;d_{n}...d_{1}}## are all n-th derivative. As you calculated in #29
1680753561384.png

##\Delta## or ##\nabla^2## contains RHS 2nd term, first derivative. How do you concilitate it ?
 
  • #34
I'm sorry, I don't know what you mean by "concilitate"
 
  • #35
My bad typo, conciliate. ##\Delta## has first derivative of r. I wonder your #32 goes with it.
 
  • #36
Ok, so I was rereading through your posts 19, 21, 23, and 25, and I think I understand them better now. I also think I MIGHT have found what I was looking for $$\nabla^{n} f = \sum_{i=1}^{m} \left [ \partial_{x_{i}}^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m} \left [ \left [ \partial_{x_{i}} \right ]^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m} \left [ \left [ \frac {\partial } {\partial {x_{i}}} \right ] ^{n} \left [ f \right ] \right ] = \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \left [ f \right ] \right )$$ and the ##\nabla^{n}## operator itself $$\nabla^{n}= \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \right )$$ where ##x## represents the Cartesian Basis, and ##q## represents the arbitrary Basis. There are ##m_x## dimensions in the Cartesian Basis and ##m_q## dimensions in the arbitrary Basis.
I think this holds, since, in Einstein Notation, we have the multivariable chain rule as $$\frac{\partial}{\partial x^i}=\frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j}$$
 
  • Like
Likes anuttarasammyak
  • #37
Is the like meant to indicate that that is correct? :D
 
  • #38
I observe my #25 and your #36 coincide.
 
  • Love
Likes Vanilla Gorilla
  • #39
Also, would it be necessary for ##m_x=m_q## for that equation $$\nabla^{n}= \sum_{i=1}^{m_{x}} \left ( \left [ \sum_{j=1}^{m_{q}} \left [ \frac{\partial q^j}{\partial x^i}\frac{\partial }{\partial q^j} \right ] \right ]^{n} \right )$$ to work?
 
  • #40
We need same number of parameters to describe same space.
 
  • Like
Likes Vanilla Gorilla
  • #41
What do I do with mixed terms (I.e., more than 1 basis vector involved), such as $$-2\cos \phi\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}$$ in my calculation? Do I just discard those?
 
  • #42
Vanilla Gorilla said:
What do I do with mixed terms (I.e., more than 1 basis vector involved), such as −2cos⁡ϕ∂∂rsin⁡ϕr∂∂ϕ in my calculation? Do I just discard those?

-2\cos \phi\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}
We have no problem on the leftest
-2\cos \phi. Applying produclt rule of differentiaion,
\frac{\partial}{\partial r}\frac{\sin \phi}{r}\frac{\partial}{\partial \phi}
=[\frac{\partial}{\partial r}\frac{\sin \phi}{r}]\frac{\partial}{\partial \phi}+\frac{\sin \phi}{r}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi}
=-\frac{\sin \phi}{r^2}\frac{\partial}{\partial \phi}+\frac{\sin \phi}{r}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi}

As for change of order of operators for an example
\frac{d}{dx}xA=A+x\frac{d}{dx}A
As operator we may delete A as
\frac{d}{dx}x=1+x\frac{d}{dx}
1=\frac{d}{dx}x-x\frac{d}{dx}=[\frac{d}{dx},x]
In general
[\frac{d}{dx},f(x)]=f'(x)
 
Last edited:
  • Like
Likes Vanilla Gorilla

Similar threads

  • · Replies 10 ·
Replies
10
Views
477
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
404
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 2 ·
Replies
2
Views
835
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K