How to Find the General Solution for a Matrix with a Free Variable?

Click For Summary
To find the general solution for a matrix with a free variable, one must analyze the reduced-row echelon form of the matrix. In the given example, the matrix leads to equations that indicate specific values for some variables while leaving others free. The discussion clarifies that the general solution is not about the matrix itself but rather the null space of the equation Ax = 0. For the second matrix, the solution indicates that x1, x2, and x3 must be zero, while x4 remains unrestricted, resulting in the general solution being expressed as [0, 0, 0, x4]. If the matrix is augmented and leads to a contradiction, it indicates an inconsistent system.
Ad123q
Messages
19
Reaction score
0
I was just wondering, if I had a matrix in reduced-row echelon form, say,

1 0 0 2
0 1 3 1
0 0 0 0

then I could write the general solution as a1= -2a4 , a2= -3a3-a4, with a3 and a4 defined in terms of these. (I obtained this solution by putting a1, a2, a3 and a4 under the first, second, third and fourth columns, equating the matrix to zero, and solving for the unknowns under the leading 1's).

But how would I find the general solution of, say

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0 ?

Any help much appreciated.
 
Physics news on Phys.org
If you are having a hard time deciphering the matrix representation you can always put them back in equations

In the latter case:

0a + b + 0c + 0d = 0
Thus b = 0

0a + 0b + c + 0d = 0
Thus c = 0

0a + 0b + 0c + d = 0

and 0 = 0 for the last equation

Thus the only vectors to satisfy the matrix are:

[x, 0, 0, 0] transpose. Where x is any real number (I assume these are matrices over R)
 
Thanks, so if I was to write x1, x2, x3, x4 under the matrix in question, would the solution space for the general solution just be x = {x1 x2 x3 x4} = {x1 0 0 0} ?
 
Ad123q said:
But how would I find the general solution of, say

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0 ?
I assume the last column is the RHS of a system of linear equations. Note that the last entry of the third row of the matrix is non-0 whereas all the coefficients of the unknowns you are solving for are 0. What does that tell you?
 
It would have helped a lot if you had asked the question correctly! There is no such thing as a "general solution of a matrix" any more than there is a general solution of a number.

What you were asking for is a general solution to the equation Ax= 0, or, equivalently, the null space of A.
The matrix equation
\left[\begin{array}{cccc}0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 &1\\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}x_1 \\ x_2\\ x_3\\ x_4\end{array}\right]= \left]\begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right]
reduces, as you say, to x1= 0, x2= 0, x3= 0 and 0= 0. Obviously, x1, x2, and x3 must all be 0 but there is no restriction at all on x4. The "general solution" is [0 0 0 x] where x can be any number. The null space is the subspace of R4 spanned by [0 0 0 1].
 
Almost right, except I think you got your matrix multiplication backwards; as said before, x2, x3, and x4 must be zero, and there is no restriction on x1.

:)
 
Correct you write your matrix in terms of the free variable which in this case would be x1.

So [1,0,0,0] would be the solution set. Also if this is an augmented matrix the general solution would be inconsistent since, 0x1 + 0x2 + 0x3 = 1, cannot be true.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
952