Let [itex]A[/itex] be an 3x3 matrix such that [itex]A\mathbf{v_1}=\mathbf{v_1}+\mathbf{v_2}, A\mathbf{v_2}=\mathbf{v_2}+\mathbf{v_3}, A\mathbf{v_3}=\mathbf{v_3}[/itex] where [itex]\mathbf{v_3} \neq \mathbb{0}[/itex]. Let [itex]B=S^{-1}AS[/itex] where [itex]S[/itex] is another 3x3 matrix.(adsbygoogle = window.adsbygoogle || []).push({});

(i) Find the general solution of [itex]\dot{\mathbf{x}}=B\mathbf{x}[/itex].

(ii) Show that 1 is the only eigenvalue of [itex]B[/itex].

It's clear that [itex]\mathbf{v_3},\mathbf{v_2}[/itex] and [itex]\mathbf{v_1}[/itex] form a chain of generalized eigenvectors associated with [itex]\lambda=1[/itex] and hence are linearly independent. From this I can find the general solution of [itex]\dot{\mathbf{x}}=A\mathbf{x}=SBS^{-1}\mathbf{x}[/itex] but how can I proceed from here to find the general solution of [itex]\dot{\mathbf{x}}=B\mathbf{x}[/itex]?

Any help is much appreciated, thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Generalized eigenvectors and differential equations

**Physics Forums | Science Articles, Homework Help, Discussion**