Generalized Log-Trig series related to the Hurwitz Zeta

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    generalized Series
Click For Summary

Discussion Overview

This thread explores Log-Trig series of the form $$\mathscr{S}_{(m, n)} (z)$$ and $$\mathscr{C}_{(m, n)} (z)$$, which involve sums of logarithmic powers weighted by sine and cosine functions. The discussion includes mathematical expressions, properties of Dirichlet L-series, and relationships to the Hurwitz Zeta function, with a focus on theoretical aspects rather than practical applications or tutorials.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • Participants define the Log-Trig series $$\mathscr{S}_{(m, n)} (z)$$ and $$\mathscr{C}_{(m, n)} (z)$$, specifying the parameters $$m, n \in \mathbb{Z} \ge 1$$ and $$0 < z < 1 \in \mathbb{Q}$$.
  • Preliminary definitions of the Riemann Zeta function $$\zeta(x)$$ and its derivatives are provided, along with connections to the Dirichlet Eta function $$\eta(x)$$.
  • Expressions for the Dirichlet Beta function $$\beta(x)$$ are discussed, including its relationship to the Zeta function and various series representations.
  • Participants present relations between Dirichlet L-series and the Hurwitz Zeta function, highlighting how these functions interrelate mathematically.
  • Corrections are made regarding the definitions of characters $$\chi_1$$ and $$\chi_2$$ associated with the Dirichlet L-series, emphasizing their proper context in modular arithmetic.
  • Discussion includes the implications of certain properties of sine and cosine functions at integer multiples, particularly in relation to the Log-Trig series.

Areas of Agreement / Disagreement

Participants express various viewpoints and mathematical formulations, but no consensus is reached on the implications or applications of the discussed series and functions. The discussion remains exploratory with multiple competing perspectives.

Contextual Notes

Some mathematical steps and assumptions are not fully resolved, particularly regarding the convergence of series and the implications of certain properties of the functions involved. The discussion relies on specific definitions that may vary in interpretation.

DreamWeaver
Messages
297
Reaction score
0
This thread is dedicated to the study of Log-Trig series of the form:
$$\mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z$$$$\mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z$$Where $$m, n \in \mathbb{Z} \ge 1$$, and $$0 < z < 1 \in \mathbb{Q}$$.This is NOT a tutorial, so by all means DO chime in, if it tickles yer fancy... :D
 
Physics news on Phys.org
A few preliminaries... I'll finish off the rest tomorrow... (Headbang)
$$\zeta(x) = \sum_{k=1}^{\infty}\frac{1}{k^x} \, \Rightarrow \, \zeta^{(m)}(x) = \frac{d^m}{dx^m} \, \sum_{k=1}^{\infty}\frac{1}{k^x} = (-1)^m\, \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^x}$$
$$\eta (x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x} = \left(1-2^{1-x}\right)\, \zeta(x) = $$$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^x} - \sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Rightarrow$$$$\eta^{(m)}(x) = (-1)^m \, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(\log k)}{k^x} \equiv $$$$(-1)^m \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m (2k+1)}{(2k+1)^x} - \frac{\log^m (2k+2)}{(2k+2)^x} \Bigg\}$$Furthermore,$$\eta^{(m)}(x) = \frac{d^m}{dx^m} \, \Bigg\{ \zeta(x)- 2^{\,1-x}\, \zeta(x) \Bigg\}=$$$$\zeta^{(m)}(x) - \sum_{j=0}^{m} 2^{\,1-x} \binom{m}{j} (-\log 2)^{m-j}\, \zeta^{(j)}(x) =$$
$$\left(1-2^{1-x}\right)\, \zeta^{(m)}(x) - \sum_{j=0}^{m-1} 2^{\,1-x} \binom{m}{j} (-\log
2)^{m-j}\, \zeta^{(j)}(x)$$

$$\beta(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^x} = \sum_{k=0}^{\infty} \Bigg\{
\frac{1}{(4k+1)^x} - \frac{1}{(4k+3)^x} \Bigg\} =$$
$$\sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(8k+1)^x} - \frac{1}{(8k+3)^x} + \frac{1}{(8k+5)^x} -
\frac{1}{(8k+7)^x} \Bigg\}$$$$\beta(x) = \frac{1}{4^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{4} \right) - \zeta\left(x,\,
\tfrac{3}{4} \right) \Bigg\} = $$
$$\frac{1}{8^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{8} \right) - \zeta\left(x,\, \tfrac{3}{8}
\right) + \zeta\left(x,\, \tfrac{5}{8} \right) - \zeta\left(x,\, \tfrac{7}{8} \right)
\Bigg\}$$
 
Last edited:
A few more expressions and relations for the Dirichlet Beta function, $$\beta(x)$$:
$$\beta^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty} \frac{(-1)^k\log^m(2k+1)}{(2k+1)^x} = $$
$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(4k+1)}{(4k+1)^x} - \frac{\log^m(4k+3)}{(4k+3)^x} \Bigg\} =$$
$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log^m(8k+1)}{(8k+1)^x} - \frac{\log^m(8k+3)}{(8k+3)^x} - \frac{\log^m(8k+5)}{(8k+5)^x} -
\frac{\log^m(8k+7)}{(8k+7)^x} \Bigg\}$$
$$\beta^{(m)}(x) = \frac{(-1)^m}{4^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (2\log 2)^{m-j} \, \Bigg\{ \zeta^{(j)} \left(x,\, \tfrac{1}{4} \right) - \zeta^{(j)} \left(x,\,
\tfrac{3}{4} \right) \Bigg\} = $$
$$\frac{(-1)^m}{8^x} \, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (3\log 2)^{m-j}\, \Bigg\{ \zeta^{(j)}\left(x,\, \tfrac{1}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{3}{8}
\right) + \zeta^{(j)}\left(x,\, \tfrac{5}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{7}{8} \right)
\Bigg\}$$

The Polygamma functions:$$\psi_0(z) = -\gamma +\sum_{k=0}^{\infty} \Bigg\{ \frac{1}{k+1}-\frac{1}{k+z} \Bigg\}$$$$\psi_{m \ge 1}(z) = (-1)^{m+1}m! \, \sum_{k=0}^{\infty}\frac{1}{(k+z)^{m+1}}$$$$\psi_{n \ge 0}(z) + (-1)^{n+1}\, \psi_{n \ge 0}(1-z) = \frac{d^n}{dz^n}\, \pi\cot \pi z$$$$\psi_{m \ge 1}(1) = (-1)^{m+1}m! \, \zeta(m+1) $$
For $$m \in \mathbb{Z} \ge 1$$, we can write the Dirichlet Beta function as:$$\beta(m) = \frac{(-1)^m}{4^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{4} \right) - \psi_{m-1}\left( \tfrac{3}{4} \right) \Bigg\}=$$$$\frac{(-1)^m}{8^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{8} \right) - \psi_{m-1}\left( \tfrac{3}{8} \right) + \psi_{m-1}\left( \tfrac{5}{8} \right) - \psi_{m-1}\left( \tfrac{7}{8}\right)\Bigg\} $$

The Legendre Chi function:$$\chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x} = \Bigg( 1-2^{\, -x}\Bigg)\, \zeta(x) \Rightarrow$$$$\chi^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(2k+1)}{(2k+1)^x}=$$$$\zeta^{(m)}(x) - 2^{\, -x}\, \sum_{j=0}^m\binom{m}{j} (-\log 2)^{m-j} \zeta^{(j)}(x)$$

Nearly done wiv the prepwork... (Heidy)
 
Last edited:
For the sake of brevity later on, I will occasionally make use of the following Dirichlet L-series, where $$\chi_1$$ and $$\chi_2$$ are characters on $$\mathbb{Z}/8\mathbb{Z}$$ defined by:$$\chi_1(2k) = \chi_2(2k) \equiv 0$$$$\chi_1(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 3, 9, 11, \, \cdots \, \\
-1, & \text{if }k = 5, 7, 13, 15, \, \cdots \,
\end{cases}$$$$\chi_2(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 7, 9, 15, \, \cdots \, \\
-1, & \text{if }k = 3, 5, 11, 13, \, \cdots \,
\end{cases}$$

In terms of the characters $$\chi_1$$ and $$\chi_2$$ we define the following Dirichlet L-series:
$$L(s, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^s} = 1+\frac{1}{3^s}-\frac{1}{5^s}-\frac{1}{7^s}+ \, \cdots $$
$$L(s, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^s} = 1-\frac{1}{3^s}-\frac{1}{5^s}+\frac{1}{7^s}+ \, \cdots $$

$$L^{(m)}(s, \chi_1) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_1(k)\, (\log k)^m}{k^s} = $$$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}+
\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}- \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}$$
$$L^{(m)}(s, \chi_2) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_2(k)\, (\log k)^m}{k^s} = $$$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}-\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}+ \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}$$
 
Last edited:
Relations between the Dirichlet L-series, the Dirichlet Beta function, and Hurwitz Zeta function:
$$\beta(x) = \sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x} = 1-\frac{1}{3^x}+\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^x} = 1+\frac{1}{3^x}-\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_1) =\beta(x) - 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+3)^x}+ 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}=$$$$\beta(x)- \frac{2}{8^x}\, \zeta\left(x, \tfrac{3}{8}\right) +
\frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right)$$

$$L(x, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^x} = 1-\frac{1}{3^x}-\frac{1}{5^x}+\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_2) =\beta(x) + 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}- 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+7)^x}=$$$$\beta(x)+ \frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right) -
\frac{2}{8^x}\, \zeta\left(x, \tfrac{7}{8}\right)$$

The Hurwitz Zeta function:$$\zeta(x,a) = \sum_{k=0}^{\infty}\frac{1}{(k+a)^x} \Rightarrow$$$$\zeta^{(m)} (x,a)= \frac{d^m}{dx^m}\, \zeta(x,a)=(-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(k+a)}{(k+a)^x}$$
Let $$p, q \in \mathbb{Z} \ge 1$$, and $$q \le p$$, then
$$\sum_{k=0}^{\infty}\frac{\log^m(kp+q)}{(kp+q)^x}= \frac{1}{p^x}\, \sum_{k=0}^{\infty} \frac{[\log p+\log (k+q/p)]^m}{(k+q/p)^x} =$$$$\frac{1}{p^x}\, \sum_{j=0}^m\binom{m}{j}(\log p)^{m-j}\, \sum_{k=0}^{\infty} \frac{\log^j (k+q/p)}{(k+q/p)^x}=$$$$\frac{1}{p^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}(\log p)^{m-j}\, \zeta^{(j)} \left(x, \tfrac{q}{p} \right)$$

That's all the groundwork out of the way. Phew...! (Heidy)
 
Special thanks to... Mathbalarka!For letting me know that when defining the characters $$\chi_1$$ and $$\chi_2$$ above, they should have been for $$\mathbb{Z}/8\mathbb{Z}$$ - since edited - rather than $$\mathbb{Z}/8$$...

I was using the notation from this 'ere paper (p.9) -->

http://arxiv.org/pdf/math/0411087v1.pdfMany thanks! :D
 
Just to recap - after all that blather about characters and zeta gubbins, we define...
$$\mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z$$$$\mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z$$Where $$m, n \in \mathbb{Z} \ge 1$$, and $$0 < z < 1 \in \mathbb{Q}$$.

Since $$\sin \pi k\equiv 0$$ for all integer $$k$$, it's clear from the definition of $$\mathscr{S}_{(m, n)} (z)$$ that
$$\mathscr{S}_{(m, n)} (1) = \mathscr{S}_{(m, n)} \left(\tfrac{1}{2}\right) \equiv 0$$Similarly, since $$\cos 2\pi k = 1$$ and $$\cos \pi k = (-1)^k$$ for all integer $$k$$, we have:$$\mathscr{C}_{(m, n)} (1) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n} = (-1)^m\, \zeta^{(m)}(n)$$and$$\mathscr{C}_{(m, n)} \left(\frac{1}{2}\right) = \sum_{k=1}^{\infty}(-1)^k\frac{(\log k)^m}{k^n} = (-1)^{m+1}\, \eta^{(m)}(n)=$$$$(-1)^{m+1} \Bigg\{ \Bigg(1-2^{\, 1-n}\Bigg)\, \zeta^{(m)}(n) - 2^{\, 1-n}\, \sum_{j=0}^{m-1}\binom{m}{j}\, (-\log 2)^{m-j}\zeta^{(j)}(n) \Bigg\}$$
 
Since $$\cos \left( \frac{4\pi}{3}\right)= \cos \left( 2\pi-\frac{2\pi}{3} \right) \equiv \cos \left( \frac{2\pi}{3} \right)=-1/2$$, then when $$z=1/3$$ we have
$$\mathscr{C}_{(m, n)} \left(\frac{1}{3}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos \left(\frac{2\pi}{3}\right)=$$$$-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}$$$$+ \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} \equiv$$$$-\frac{1}{2}\, \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m(3k+1)}{(3k+1)^n}+ \frac{\log^m(3k+2)}{(3k+2)^n}+ \frac{\log^m(3k+3)}{(3k+3)^n}
\Bigg\}$$$$+ \frac{3}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} =$$$$-\frac{1}{2}\, \sum_{k=1}^m \frac{(\log k)^m}{k^n} + \frac{3^{\,1-n}}{2}\, \sum_{k=0}^{\infty}\frac{[\log 3+ \log(k+1)]^m}{(k+1)^n}=$$$$\frac{(-1)^{m+1}}{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$

---------------------------------------

$$\therefore \, \mathscr{C}_{(m, n)} \left(\frac{1}{3}\right)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$
 
Due to the trigonometric nature of the functions $$\mathscr{C}_{(m,n)}(z)$$ and $$\mathscr{S}_{(m,n)}(z)$$, it should be possible to obtain a number of reflection and transformation formulae. This is indeed the case.

For positive integer $$k$$, and $$0 <z \le 1$$, we have:$$\cos 2\pi k(1-z) = \cos 2\pi kz$$

$$\sin 2\pi k(1-z) = -\sin 2\pi kz$$
Hence $$\mathscr{C}_{(m,n)}(1-z)=\mathscr{C}_{(m,n)}(z)$$ $$\mathscr{S}_{(m,n)}(1-z)=-\mathscr{S}_{(m,n)}(z)$$
Applying the first reflection formula to the previous result for $$z=1/3$$ gives the case for $$z=2/3$$.
---------------------------------------

$$\therefore \, \mathscr{C}_{(m, n)} \left(\frac{2}{3}\right)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$
 
  • #10
When considering the Sine case for $$z=1/3$$, it's readily apparent that every third term vanishes, due to a coefficient congruous to $$\sin \pi k$$:$$\mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)= \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{2\pi k}{3}\right)=$$$$\sin\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
+
\sin\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}=$$$$\frac{\sqrt{3}}{2}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(3k+1)}{(3k+1)^n}-\frac{\log^m(3k+2)}{(3k+2)^n}
\Bigg\}=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m\binom{m}{j} (\log 3)^{m-j}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^j(k+1/3)}{(k+1/3)^n}-\frac{\log^j(k+2/3)}{(k+2/3)^n}
\Bigg\}=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$The result for $$z=2/3$$ is obtained from the above, and the reflection formula.
---------------------------------------
$$\mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$$$\mathscr{S}_{(m,n)}\left(\frac{2}{3}\right)=$$$$-\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$
 
  • #11
For the Sine series, the case $$z=1/4$$ can be resolved in terms of derivatives of the Dirichlet Beta function; this is a natural consequence of the fact that every term with even index k vanishes:$$\mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=$$$$\sum_{k=0}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{\pi k}{2}\right) \equiv$$$$\sin\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\sin\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+ $$$$\sin\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\sin\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n} \equiv $$$$\sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n} - \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}=$$$$\sum_{k=0}^{\infty}(-1)^k\frac{\log^m(2k+1)}{(2k+1)^n}= $$$$(-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \left[\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\right] = $$$$(-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \,\beta(x) = (-1)^m\beta^{(m)}(n)$$The result for $$z=3/4$$ is obtain from this one, via the reflection formula.

---------------------------------------

$$\mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=(-1)^m\beta^{(m)}(n)$$

$$\mathscr{S}_{(m,n)}\left(\frac{3}{4}\right)=(-1)^{m+1}\beta^{(m)}(n)$$
 
  • #12
Setting $$z=1/4$$ in the Cosine series gives:$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\cos\left(\frac{\pi k}{2}\right) \equiv$$$$\cos\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+$$$$\cos\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$-\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+
\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(4k+2)^x}-\frac{1}{(4k+4)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \Bigg\{ \sum_{k=0}^{\infty} \frac{1}{(2k+1)^x}-\sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{\eta(x)}{2^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\left(1-\frac{1}{2^{\,x-1}}\right)\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-x}\, \zeta(x) - (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-(2x-1)}\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, 2^{-x} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)$$$$-(-1)^{m+1}\, \lim_{x \to n}\, 2^{-(2x-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)=$$
$$(-1)^{m+1}\, 2^{-n} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$-(-1)^{m+1}\, 2^{-(2n-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)=$$$$\sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$

---------------------------------------

$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$\mathscr{C}_{(m,n)}\left(\frac{3}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K