Generalized Log-Trig series related to the Hurwitz Zeta

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    generalized Series
Click For Summary
SUMMARY

This discussion focuses on the Log-Trig series defined as $$\mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z$$ and $$\mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z$$ for integers $$m, n \ge 1$$ and rational $$0 < z < 1$$. The discussion elaborates on the relationships between these series and various zeta functions, including the Hurwitz Zeta function and Dirichlet Beta function. Key results include reflection formulas and specific evaluations at points such as $$z = \frac{1}{3}$$ and $$z = \frac{2}{3}$$, demonstrating the series' properties and transformations.

PREREQUISITES
  • Understanding of series convergence and summation techniques
  • Familiarity with logarithmic functions and their properties
  • Knowledge of zeta functions, particularly the Hurwitz Zeta function and Dirichlet Beta function
  • Basic trigonometric identities and their applications in series
NEXT STEPS
  • Study the properties of the Hurwitz Zeta function, specifically $$\zeta(x,a)$$
  • Explore the Dirichlet Beta function and its applications in number theory
  • Investigate the convergence criteria for series involving logarithmic terms
  • Learn about reflection and transformation formulas in trigonometric series
USEFUL FOR

Mathematicians, researchers in number theory, and students studying advanced calculus or series analysis will benefit from this discussion, particularly those interested in the properties of special functions and their applications.

DreamWeaver
Messages
297
Reaction score
0
This thread is dedicated to the study of Log-Trig series of the form:
$$\mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z$$$$\mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z$$Where $$m, n \in \mathbb{Z} \ge 1$$, and $$0 < z < 1 \in \mathbb{Q}$$.This is NOT a tutorial, so by all means DO chime in, if it tickles yer fancy... :D
 
Physics news on Phys.org
A few preliminaries... I'll finish off the rest tomorrow... (Headbang)
$$\zeta(x) = \sum_{k=1}^{\infty}\frac{1}{k^x} \, \Rightarrow \, \zeta^{(m)}(x) = \frac{d^m}{dx^m} \, \sum_{k=1}^{\infty}\frac{1}{k^x} = (-1)^m\, \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^x}$$
$$\eta (x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x} = \left(1-2^{1-x}\right)\, \zeta(x) = $$$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^x} - \sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Rightarrow$$$$\eta^{(m)}(x) = (-1)^m \, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(\log k)}{k^x} \equiv $$$$(-1)^m \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m (2k+1)}{(2k+1)^x} - \frac{\log^m (2k+2)}{(2k+2)^x} \Bigg\}$$Furthermore,$$\eta^{(m)}(x) = \frac{d^m}{dx^m} \, \Bigg\{ \zeta(x)- 2^{\,1-x}\, \zeta(x) \Bigg\}=$$$$\zeta^{(m)}(x) - \sum_{j=0}^{m} 2^{\,1-x} \binom{m}{j} (-\log 2)^{m-j}\, \zeta^{(j)}(x) =$$
$$\left(1-2^{1-x}\right)\, \zeta^{(m)}(x) - \sum_{j=0}^{m-1} 2^{\,1-x} \binom{m}{j} (-\log
2)^{m-j}\, \zeta^{(j)}(x)$$

$$\beta(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^x} = \sum_{k=0}^{\infty} \Bigg\{
\frac{1}{(4k+1)^x} - \frac{1}{(4k+3)^x} \Bigg\} =$$
$$\sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(8k+1)^x} - \frac{1}{(8k+3)^x} + \frac{1}{(8k+5)^x} -
\frac{1}{(8k+7)^x} \Bigg\}$$$$\beta(x) = \frac{1}{4^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{4} \right) - \zeta\left(x,\,
\tfrac{3}{4} \right) \Bigg\} = $$
$$\frac{1}{8^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{8} \right) - \zeta\left(x,\, \tfrac{3}{8}
\right) + \zeta\left(x,\, \tfrac{5}{8} \right) - \zeta\left(x,\, \tfrac{7}{8} \right)
\Bigg\}$$
 
Last edited:
A few more expressions and relations for the Dirichlet Beta function, $$\beta(x)$$:
$$\beta^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty} \frac{(-1)^k\log^m(2k+1)}{(2k+1)^x} = $$
$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(4k+1)}{(4k+1)^x} - \frac{\log^m(4k+3)}{(4k+3)^x} \Bigg\} =$$
$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log^m(8k+1)}{(8k+1)^x} - \frac{\log^m(8k+3)}{(8k+3)^x} - \frac{\log^m(8k+5)}{(8k+5)^x} -
\frac{\log^m(8k+7)}{(8k+7)^x} \Bigg\}$$
$$\beta^{(m)}(x) = \frac{(-1)^m}{4^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (2\log 2)^{m-j} \, \Bigg\{ \zeta^{(j)} \left(x,\, \tfrac{1}{4} \right) - \zeta^{(j)} \left(x,\,
\tfrac{3}{4} \right) \Bigg\} = $$
$$\frac{(-1)^m}{8^x} \, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (3\log 2)^{m-j}\, \Bigg\{ \zeta^{(j)}\left(x,\, \tfrac{1}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{3}{8}
\right) + \zeta^{(j)}\left(x,\, \tfrac{5}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{7}{8} \right)
\Bigg\}$$

The Polygamma functions:$$\psi_0(z) = -\gamma +\sum_{k=0}^{\infty} \Bigg\{ \frac{1}{k+1}-\frac{1}{k+z} \Bigg\}$$$$\psi_{m \ge 1}(z) = (-1)^{m+1}m! \, \sum_{k=0}^{\infty}\frac{1}{(k+z)^{m+1}}$$$$\psi_{n \ge 0}(z) + (-1)^{n+1}\, \psi_{n \ge 0}(1-z) = \frac{d^n}{dz^n}\, \pi\cot \pi z$$$$\psi_{m \ge 1}(1) = (-1)^{m+1}m! \, \zeta(m+1) $$
For $$m \in \mathbb{Z} \ge 1$$, we can write the Dirichlet Beta function as:$$\beta(m) = \frac{(-1)^m}{4^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{4} \right) - \psi_{m-1}\left( \tfrac{3}{4} \right) \Bigg\}=$$$$\frac{(-1)^m}{8^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{8} \right) - \psi_{m-1}\left( \tfrac{3}{8} \right) + \psi_{m-1}\left( \tfrac{5}{8} \right) - \psi_{m-1}\left( \tfrac{7}{8}\right)\Bigg\} $$

The Legendre Chi function:$$\chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x} = \Bigg( 1-2^{\, -x}\Bigg)\, \zeta(x) \Rightarrow$$$$\chi^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(2k+1)}{(2k+1)^x}=$$$$\zeta^{(m)}(x) - 2^{\, -x}\, \sum_{j=0}^m\binom{m}{j} (-\log 2)^{m-j} \zeta^{(j)}(x)$$

Nearly done wiv the prepwork... (Heidy)
 
Last edited:
For the sake of brevity later on, I will occasionally make use of the following Dirichlet L-series, where $$\chi_1$$ and $$\chi_2$$ are characters on $$\mathbb{Z}/8\mathbb{Z}$$ defined by:$$\chi_1(2k) = \chi_2(2k) \equiv 0$$$$\chi_1(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 3, 9, 11, \, \cdots \, \\
-1, & \text{if }k = 5, 7, 13, 15, \, \cdots \,
\end{cases}$$$$\chi_2(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 7, 9, 15, \, \cdots \, \\
-1, & \text{if }k = 3, 5, 11, 13, \, \cdots \,
\end{cases}$$

In terms of the characters $$\chi_1$$ and $$\chi_2$$ we define the following Dirichlet L-series:
$$L(s, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^s} = 1+\frac{1}{3^s}-\frac{1}{5^s}-\frac{1}{7^s}+ \, \cdots $$
$$L(s, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^s} = 1-\frac{1}{3^s}-\frac{1}{5^s}+\frac{1}{7^s}+ \, \cdots $$

$$L^{(m)}(s, \chi_1) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_1(k)\, (\log k)^m}{k^s} = $$$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}+
\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}- \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}$$
$$L^{(m)}(s, \chi_2) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_2(k)\, (\log k)^m}{k^s} = $$$$(-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}-\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}+ \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}$$
 
Last edited:
Relations between the Dirichlet L-series, the Dirichlet Beta function, and Hurwitz Zeta function:
$$\beta(x) = \sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x} = 1-\frac{1}{3^x}+\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^x} = 1+\frac{1}{3^x}-\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_1) =\beta(x) - 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+3)^x}+ 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}=$$$$\beta(x)- \frac{2}{8^x}\, \zeta\left(x, \tfrac{3}{8}\right) +
\frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right)$$

$$L(x, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^x} = 1-\frac{1}{3^x}-\frac{1}{5^x}+\frac{1}{7^x}+ \, \cdots $$$$L(x, \chi_2) =\beta(x) + 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}- 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+7)^x}=$$$$\beta(x)+ \frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right) -
\frac{2}{8^x}\, \zeta\left(x, \tfrac{7}{8}\right)$$

The Hurwitz Zeta function:$$\zeta(x,a) = \sum_{k=0}^{\infty}\frac{1}{(k+a)^x} \Rightarrow$$$$\zeta^{(m)} (x,a)= \frac{d^m}{dx^m}\, \zeta(x,a)=(-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(k+a)}{(k+a)^x}$$
Let $$p, q \in \mathbb{Z} \ge 1$$, and $$q \le p$$, then
$$\sum_{k=0}^{\infty}\frac{\log^m(kp+q)}{(kp+q)^x}= \frac{1}{p^x}\, \sum_{k=0}^{\infty} \frac{[\log p+\log (k+q/p)]^m}{(k+q/p)^x} =$$$$\frac{1}{p^x}\, \sum_{j=0}^m\binom{m}{j}(\log p)^{m-j}\, \sum_{k=0}^{\infty} \frac{\log^j (k+q/p)}{(k+q/p)^x}=$$$$\frac{1}{p^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}(\log p)^{m-j}\, \zeta^{(j)} \left(x, \tfrac{q}{p} \right)$$

That's all the groundwork out of the way. Phew...! (Heidy)
 
Special thanks to... Mathbalarka!For letting me know that when defining the characters $$\chi_1$$ and $$\chi_2$$ above, they should have been for $$\mathbb{Z}/8\mathbb{Z}$$ - since edited - rather than $$\mathbb{Z}/8$$...

I was using the notation from this 'ere paper (p.9) -->

http://arxiv.org/pdf/math/0411087v1.pdfMany thanks! :D
 
Just to recap - after all that blather about characters and zeta gubbins, we define...
$$\mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z$$$$\mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z$$Where $$m, n \in \mathbb{Z} \ge 1$$, and $$0 < z < 1 \in \mathbb{Q}$$.

Since $$\sin \pi k\equiv 0$$ for all integer $$k$$, it's clear from the definition of $$\mathscr{S}_{(m, n)} (z)$$ that
$$\mathscr{S}_{(m, n)} (1) = \mathscr{S}_{(m, n)} \left(\tfrac{1}{2}\right) \equiv 0$$Similarly, since $$\cos 2\pi k = 1$$ and $$\cos \pi k = (-1)^k$$ for all integer $$k$$, we have:$$\mathscr{C}_{(m, n)} (1) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n} = (-1)^m\, \zeta^{(m)}(n)$$and$$\mathscr{C}_{(m, n)} \left(\frac{1}{2}\right) = \sum_{k=1}^{\infty}(-1)^k\frac{(\log k)^m}{k^n} = (-1)^{m+1}\, \eta^{(m)}(n)=$$$$(-1)^{m+1} \Bigg\{ \Bigg(1-2^{\, 1-n}\Bigg)\, \zeta^{(m)}(n) - 2^{\, 1-n}\, \sum_{j=0}^{m-1}\binom{m}{j}\, (-\log 2)^{m-j}\zeta^{(j)}(n) \Bigg\}$$
 
Since $$\cos \left( \frac{4\pi}{3}\right)= \cos \left( 2\pi-\frac{2\pi}{3} \right) \equiv \cos \left( \frac{2\pi}{3} \right)=-1/2$$, then when $$z=1/3$$ we have
$$\mathscr{C}_{(m, n)} \left(\frac{1}{3}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos \left(\frac{2\pi}{3}\right)=$$$$-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}$$$$+ \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} \equiv$$$$-\frac{1}{2}\, \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m(3k+1)}{(3k+1)^n}+ \frac{\log^m(3k+2)}{(3k+2)^n}+ \frac{\log^m(3k+3)}{(3k+3)^n}
\Bigg\}$$$$+ \frac{3}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} =$$$$-\frac{1}{2}\, \sum_{k=1}^m \frac{(\log k)^m}{k^n} + \frac{3^{\,1-n}}{2}\, \sum_{k=0}^{\infty}\frac{[\log 3+ \log(k+1)]^m}{(k+1)^n}=$$$$\frac{(-1)^{m+1}}{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$

---------------------------------------

$$\therefore \, \mathscr{C}_{(m, n)} \left(\frac{1}{3}\right)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$
 
Due to the trigonometric nature of the functions $$\mathscr{C}_{(m,n)}(z)$$ and $$\mathscr{S}_{(m,n)}(z)$$, it should be possible to obtain a number of reflection and transformation formulae. This is indeed the case.

For positive integer $$k$$, and $$0 <z \le 1$$, we have:$$\cos 2\pi k(1-z) = \cos 2\pi kz$$

$$\sin 2\pi k(1-z) = -\sin 2\pi kz$$
Hence $$\mathscr{C}_{(m,n)}(1-z)=\mathscr{C}_{(m,n)}(z)$$ $$\mathscr{S}_{(m,n)}(1-z)=-\mathscr{S}_{(m,n)}(z)$$
Applying the first reflection formula to the previous result for $$z=1/3$$ gives the case for $$z=2/3$$.
---------------------------------------

$$\therefore \, \mathscr{C}_{(m, n)} \left(\frac{2}{3}\right)=$$$$\frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)$$
 
  • #10
When considering the Sine case for $$z=1/3$$, it's readily apparent that every third term vanishes, due to a coefficient congruous to $$\sin \pi k$$:$$\mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)= \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{2\pi k}{3}\right)=$$$$\sin\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
+
\sin\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}=$$$$\frac{\sqrt{3}}{2}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(3k+1)}{(3k+1)^n}-\frac{\log^m(3k+2)}{(3k+2)^n}
\Bigg\}=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m\binom{m}{j} (\log 3)^{m-j}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^j(k+1/3)}{(k+1/3)^n}-\frac{\log^j(k+2/3)}{(k+2/3)^n}
\Bigg\}=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$The result for $$z=2/3$$ is obtained from the above, and the reflection formula.
---------------------------------------
$$\mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)=$$$$\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$$$\mathscr{S}_{(m,n)}\left(\frac{2}{3}\right)=$$$$-\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}$$
 
  • #11
For the Sine series, the case $$z=1/4$$ can be resolved in terms of derivatives of the Dirichlet Beta function; this is a natural consequence of the fact that every term with even index k vanishes:$$\mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=$$$$\sum_{k=0}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{\pi k}{2}\right) \equiv$$$$\sin\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\sin\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+ $$$$\sin\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\sin\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n} \equiv $$$$\sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n} - \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}=$$$$\sum_{k=0}^{\infty}(-1)^k\frac{\log^m(2k+1)}{(2k+1)^n}= $$$$(-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \left[\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\right] = $$$$(-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \,\beta(x) = (-1)^m\beta^{(m)}(n)$$The result for $$z=3/4$$ is obtain from this one, via the reflection formula.

---------------------------------------

$$\mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=(-1)^m\beta^{(m)}(n)$$

$$\mathscr{S}_{(m,n)}\left(\frac{3}{4}\right)=(-1)^{m+1}\beta^{(m)}(n)$$
 
  • #12
Setting $$z=1/4$$ in the Cosine series gives:$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\cos\left(\frac{\pi k}{2}\right) \equiv$$$$\cos\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+$$$$\cos\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$-\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+
\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(4k+2)^x}-\frac{1}{(4k+4)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \Bigg\{ \sum_{k=0}^{\infty} \frac{1}{(2k+1)^x}-\sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{\eta(x)}{2^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\left(1-\frac{1}{2^{\,x-1}}\right)\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-x}\, \zeta(x) - (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-(2x-1)}\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, 2^{-x} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)$$$$-(-1)^{m+1}\, \lim_{x \to n}\, 2^{-(2x-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)=$$
$$(-1)^{m+1}\, 2^{-n} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$-(-1)^{m+1}\, 2^{-(2n-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)=$$$$\sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$

---------------------------------------

$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$\mathscr{C}_{(m,n)}\left(\frac{3}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K