Setting $$z=1/4$$ in the Cosine series gives:$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\cos\left(\frac{\pi k}{2}\right) \equiv$$$$\cos\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+$$$$\cos\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$-\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+
\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(4k+2)^x}-\frac{1}{(4k+4)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \Bigg\{ \sum_{k=0}^{\infty} \frac{1}{(2k+1)^x}-\sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Bigg\}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{\eta(x)}{2^x}=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\left(1-\frac{1}{2^{\,x-1}}\right)\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-x}\, \zeta(x) - (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-(2x-1)}\, \zeta(x)=$$$$(-1)^{m+1}\, \lim_{x \to n}\, 2^{-x} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)$$$$-(-1)^{m+1}\, \lim_{x \to n}\, 2^{-(2x-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)=$$
$$(-1)^{m+1}\, 2^{-n} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$-(-1)^{m+1}\, 2^{-(2n-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)=$$$$\sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$
---------------------------------------
$$\mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$$$\mathscr{C}_{(m,n)}\left(\frac{3}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)$$