Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Generating Functional for Yukawa Interactions

  1. Feb 27, 2009 #1

    I want to derive the connected two point function for the interacting boson-fermion theory.

    I know that the generating functional is

    [tex] Z(J, \overline{\eta}, \eta) = N \; exp \left( \int d^4 z \; L_{int} \left(-i \frac{\delta}{\delta J(z)} \right) \left(-i \frac{\delta}{\delta \overline{\eta}(z)} \right) \left(-i \frac{\delta}{\delta \eta (z)} \right) \right) [/tex] [tex] exp \left( -\int d^4 x d^4 y \left[ \frac{1}{2} J(x) i \Delta_F (x - y) J(y) + \overline{\eta}(x) i S_F (x-y) \eta(y) \right] \right)[/tex]

    The connected correlation function is

    [tex] G_C^2 (x_1 , x_2) = \left( -i \frac{\delta}{\delta J(x_1)} \right) \left( -i \frac{\delta}{\delta J(x_2)} \right) i W(J) \quad |_{J=0}[/tex]

    I found the identity

    [tex] \left( -i \frac{\delta}{\delta J(x_1)} \right) \left( -i \frac{\delta}{\delta J(x_2)} \right) i W(J) = \frac{1}{Z} \left( -i \frac{\delta}{\delta J(x_1)} \right) \left( -i \frac{\delta }{\delta J(x_2)} \right) Z - \frac{1}{Z^2} \left( -i \frac{\delta Z}{\delta J(x_1)} \right) \left( -i \frac{\delta Z}{\delta J(x_2)} \right) [/tex]

    But I don't know, how to use it with the given Z.

    How do I compute the correlation function [tex] G_C^2 (x_1 , x_2) [/tex] ?

    Mr. Fogg
  2. jcsd
  3. Mar 5, 2011 #2
    I'm interested in this too. How do I find the two point function for the scalar to scalar process, with a fermion virtual loop?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook